Faculty Articles
Redox-Related Epigenetic Mechanisms in Glioblastoma: Nuclear Factor (Erythroid-Derived 2)-Like 2, Cobalamin, and Dopamine Receptor Subtype 4.
Publication Title
Front Oncol
Publication Date
1-1-2017
Abstract
Glioblastoma is an exceptionally difficult cancer to treat. Cancer is universally marked by epigenetic changes, which play key roles in sustaining a malignant phenotype, in addition to disease progression and patient survival. Studies have shown strong links between the cellular redox state and epigenetics. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a redox-sensitive transcription factor that upregulates endogenous antioxidant production, and is aberrantly expressed in many cancers, including glioblastoma. Methylation of DNA and histones provides a mode of epigenetic regulation, and cobalamin-dependent reactions link the redox state to methylation. Antagonists of dopamine receptor subtype 4 (D
Volume
7
First Page
46
Last Page
46
Disciplines
Medicine and Health Sciences | Pharmacy and Pharmaceutical Sciences
NSUWorks Citation
Schrier, Matthew Scott; Trivedi, Malav Suchin; and Deth, Richard Carlton, "Redox-Related Epigenetic Mechanisms in Glioblastoma: Nuclear Factor (Erythroid-Derived 2)-Like 2, Cobalamin, and Dopamine Receptor Subtype 4." (2017). Faculty Articles. 92.
https://nsuworks.nova.edu/hpd_corx_facarticles/92