Faculty Articles

Zinc Exacerbates Tau Pathology in a Tau Mouse Model.

ORCID

0000-0003-4797-8754

Document Type

Article

Publication Title

Journal of Alzheimer's Disease

ISSN

1875-8908

Publication Date

6-19-2018

Abstract

Hyperphosphorylated tau protein is a key pathology in Alzheimer's disease (AD), frontotemporal dementia, chronic traumatic encephalopathy, and Parkinson's disease. The essential trace element zinc exacerbates tauopathy in vitro as well as in a Drosophila model of AD. However, the interaction has never been assessed behaviorally or biochemically in mammals. Zinc supplementation is prevalent in society, finding use as a treatment for macular degeneration and cataracts, and is also taken as an immune system booster with high levels appearing in multivitamins marketed toward the elderly. Using a transgenic mouse model that contains the human gene for tau protein (P301L), we assessed the effects of excess chronic zinc supplementation on tau pathology. Behavioral tests included nest building, circadian rhythm, Morris Water Maze, fear conditioning, and open field. Biochemically, total tau and Ser396 phosphorylation were assessed using western blot. Number of tangles were assessed by Thioflavin-S and free zinc levels were assessed by Zinpyr-1. Tau mice demonstrated behavioral deficits compared to control mice. Zinc supplementation exacerbated tauopathic deficits in circadian rhythm, nesting behavior, and Morris Water Maze. Biochemically, zinc-supplemented tau mice showed increased phosphorylation at pSer396. Zinc supplementation in tau mice also increased tangle numbers in the hippocampus while decreasing free-zinc levels, demonstrating that tangles were sequestering zinc. These results show that zinc intensified the deficits in behavior and biochemistry caused by tau.

DOI

10.3233/JAD-180151

Volume

64

Issue

2

First Page

617

Last Page

630

PubMed ID

29914030

This document is currently not available here.

Peer Reviewed

Find in your library

Share

COinS