HCNSO Student Theses and Dissertations
Defense Date
4-26-2019
Document Type
Thesis
Degree Name
M.S. Marine Biology
First Advisor
Joana Figueiredo, Ph.D.
Second Advisor
Brian Walker, Ph.D.
Third Advisor
Emmanuel Hanert, Ph.D.
Abstract
The decline of Acropora cervicornis and Acropora palmata populations and consequent listing as endangered species has prompted the need for restoration. Since financial resources are limited, optimal sites for restoration should not only be environmentally suitable for outplant survival, but also have a greater capacity to replenish surrounding reefs with larvae. However, in Florida coral larval dispersal patterns and reef connectivity remain poorly studied. Here, we measured long term larval survival and competency of A. cervicornis to calibrate a high resolution (100m) biophysical larval dispersal model of Acropora in the Florida Reef Tract (FRT). This model revealed that there is potential connectivity between reefs along the FRT, with most source reefs being located in the southern portion of the reef track, and most sinks in the northern part. The connectivity matrix was used then to develop a metapopulation model accounting for larval dispersal patterns, current and historic habitat for the species, growth, fecundity, and density-dependent post-settlement mortality for A. cervicornis and A. palmata, which allows comparing the capacity of suitable restoration sites to recolonize other reefs through sexual recruitment. Furthermore, it can determine optimal mesoscale spatial scaling and temporal planning of restoration project. We found that there was regional variation in the optimal spatial scaling, due to differences in intra-reginal connectivity and exiting coral cover. We also found that temporally staggering outplanting effort is important in poor environmental conditions. Considering ecological processes in restoration will enhance genetic diversity, hasten coral recovery, and boost resilience across the entire reef system.
NSUWorks Citation
Samantha King. 2019. Optimizing restoration site selection along the Florida Reef Tract for the coral species Acropora cervicornis and Acropora palmata. Master's thesis. Nova Southeastern University. Retrieved from NSUWorks, . (508)
https://nsuworks.nova.edu/occ_stuetd/508.