Marine & Environmental Sciences Faculty Articles

Temporal Records of δ13C and δ15N in North Pacific Pinnipeds: Inferences Regarding Environmental Change and Diet

Document Type

Article

Publication Title

Oecologia

ISSN

0029-8549

Publication Date

12-2001

Keywords

Stable isotope analysis, Steller sea lions, Northern fur seals, Harbor seals, Bone collagen

Abstract

Sea lion and seal populations in Alaskan waters underwent various degrees of decline during the latter half of the twentieth century and the cause(s) for the declines remain uncertain. The stable carbon (13C/12C) and nitrogen (15N/14N) isotope ratios in bone collagen from wild Steller sea lions (Eumetopias jubatus), northern fur seals (Callorhinus ursinus) and harbor seals (Phoca vitulina) from the Bering Sea and Gulf of Alaska were measured for the period 1951–1997 to test the hypothesis that a change in trophic level may have occurred during this interval and contributed to the population declines. A significant change in δ15N in pinniped tissues over time would imply a marked change in trophic level. No significant change in bone collagen δ15N was found for any of the three species during the past 47 years in either the Bering Sea or the Gulf of Alaska. However, the 15N in the Steller sea lion collagen was significantly higher than both northern fur seals and harbor seals. A significant decline in δ13C (almost 2 ‰ over the 47 years) was evident in Steller sea lions, while a declining trend, though not significant, was evident in harbor seals and northern fur seals. Changes in foraging location, in combination with a trophic shift, may offer one possible explanation. Nevertheless, a decrease in δ13C over time with no accompanying change in δ15N suggests an environmental change affecting the base of the foodweb rather than a trophic level change due to prey switching. A decline in the seasonal primary production in the region, possibly resulting from decreased phytoplankton growth rates, would exhibit itself as a decline in δ13C. Declining production could be an indication of a reduced carrying capacity in the North Pacific Ocean. Sufficient quantities of optimal prey species may have fallen below threshold sustaining densities for these pinnipeds, particularly for yearlings and subadults who have not yet developed adequate foraging skills.

DOI

10.1007/s004420100756

Volume

129

Issue

4

First Page

591

Last Page

601

Comments

©Springer-Verlag 2001

Additional Comments

Coastal Marine Institute of Minerals Management Service contract #: 14-35-0001-30661

This document is currently not available here.

Peer Reviewed

Find in your library

Share

COinS