Marine & Environmental Sciences Faculty Articles
ORCID
http://orcid.org/0000-0002-5280-7071
Document Type
Article
Publication Title
Frontiers in Marine Science
ISSN
2296-7745
Publication Date
5-4-2022
Abstract
The scale of the Deepwater Horizon disaster was and is unprecedented: geographic extent, pollutant amount, countermeasure scope, and of most relevance to this Research Topic issue, range of ecotypes affected. These ecotypes include coastal/nearshore, continental shelf, deep benthic, and open-ocean domains, the last of which is the subject of this synthesis. The open-ocean ecotype comprises ~90% of the volume of the Gulf of Mexico. The exact percentage of this ecotype contaminated with toxins is unknown due to its three-dimensional nature and dynamics, but estimates suggest that the footprint encompassed most of its eastern half. Further, interactions between the water column and the deep benthos may be persistent, making this synthesis one of time (a decade) rather than event conclusion. Here we examine key elements of the open-ocean ecosystem, with emphasis on vulnerability and resilience. Of paramount importance relative to the Gulf nearshore and shelf ecotypes, pre-disaster baseline data were lacking for most of the fauna. In such cases, inferences were drawn from post-disaster assessments. Both phytoplankton and mesozooplankton vulnerabilities were quite high, but resilience appeared equally so. The phytoplankton situation was a bit more complex in that toxin-imposed reductions may have been offset by nutrient injection via high freshwater discharge in 2010. Intermediate trophic levels exhibited population-level depressions, ostensibly due to high vulnerability and low resilience. Apex predator impacts were variable. Certain large epipelagic fishes may have avoided the highest concentrations of hydrocarbons/dispersant, and thus larval abundances returned to pre-disaster levels of variability and abundance within a few years after a steep initial decline. Oceanic cetaceans, particularly shallow-diving stenellid dolphins, did not appear to avoid oiled waters and exhibited strong declines in the northern Gulf. Given that population declines of many open-ocean taxa appear to be ongoing a decade later, we conclude that this largest of Gulf ecosystem components, like its deep-benthic counterpart, is as fragile as it is voluminous. This is particularly concerning given the rapid, and likely irreversible, shift to deeper waters by the US and Mexican oil industries in concert with the higher likelihood of accidents with increasing platform depth.
DOI
https://doi.org/10.3389/fmars.2022.753391
Volume
9
First Page
753391
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
NSUWorks Citation
Tracey Sutton, Rosanna J. Milligan, Kendra Daly, Kevin M. Boswell, April B. Cook, Maëlle Cornic, Tamara Frank, Kaitlin Frasier, Daniel Hahn, Frank Hernandez, John Hildebrand, Chuanmin Hu, Matthew Johnston, Samantha B. Joye, Heather Judkins, Jon A. Moore, Steven A. Murawski, Nina Pruzinsky, John A. Quinlan, Andrew Remsen, Kelly L. Robinson, Isabel C. Romero, Jay R. Rooker, Michael Vecchione, and R. J. David Wells. 2022. The Open-Ocean Gulf of Mexico After Deepwater Horizon: Synthesis of a Decade of Research .Frontiers in Marine Science : 753391 . https://nsuworks.nova.edu/occ_facarticles/1353.
COinS
Comments
Copyright © 2022 Sutton, Milligan, Daly, Boswell, Cook, Cornic, Frank, Frasier, Hahn, Hernandez, Hildebrand, Hu, Johnston, Joye, Judkins, Moore, Murawski, Pruzinsky, Quinlan, Remsen, Robinson, Romero, Rooker, Vecchione and Wells. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.