Marine & Environmental Sciences Faculty Articles
ORCID
0000-0003-3556-7616
Document Type
Article
Publication Title
Aquatic Geochemistry
ISSN
1380-6165
Publication Date
5-16-2020
Keywords
Carbonate chemistry, Carbon cycling, Estuarine processes, Blue carbon, Ocean acidification, Sediment, Early diagenesis, Interstitial water
Abstract
Seagrass systems are integral components of both local and global carbon cycles and can substantially modify seawater biogeochemistry, which has ecological ramifications. However, the influence of seagrass on porewater biogeochemistry has not been fully described, and the exact role of this marine macrophyte and associated microbial communities in the modification of porewater chemistry remains equivocal. In the present study, carbonate chemistry in the water column and porewater was investigated over diel timescales in contrasting, tidally influenced seagrass systems in Southern California and Bermuda, including vegetated (Zostera marina) and unvegetated biomes (0–16 cm) in Mission Bay, San Diego, USA and a vegetated system (Thallasia testudinium) in Mangrove Bay, Ferry Reach, Bermuda. In Mission Bay, dissolved inorganic carbon (DIC) and total alkalinity (TA) exhibited strong increasing gradients with sediment depth. Vertical porewater profiles differed between the sites, with almost twice as high concentrations of DIC and TA observed in the vegetated compared to the unvegetated sediments. In Mangrove Bay, both the range and vertical profiles of porewater carbonate parameters such as DIC and TA were much lower and, in contrast to Mission Bay where no distinct temporal signal was observed, biogeochemical parameters followed the semi-diurnal tidal signal in the water column. The observed differences between the study sites most likely reflect a differential influence of biological (biomass, detritus and infauna) and physical processes (e.g., sediment permeability, residence time and mixing) on porewater carbonate chemistry in the different settings.
DOI
10.1007/s10498-020-09378-8
First Page
1
Last Page
25
Additional Comments
NSF grant #: OCE 12-55042
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
NSUWorks Citation
Theodor Kindeberg, Nicholas R. Bates, Travis A. Courtney, Tyler Cyronak, Alyssa Griffin, Fred T. Mackenzie, May-Linn Paulsen, and Andreas J. Andersson. 2020. Porewater Carbonate Chemistry Dynamics in a Temperate and a Subtropical Seagrass System .Aquatic Geochemistry : 1 -25. https://nsuworks.nova.edu/occ_facarticles/1093.
Comments
©The Author(s) 2020. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.