Mathematics Faculty Articles
Minimum Number of Distinct Eigenvalues of Graphs
Document Type
Article
Publication Date
9-1-2013
Publication Title
Electronic Journal of Linear Algebra
Keywords
Symmetric matrix, Eigenvalue, Join of graphs, Diameter, Trees, Bipartite graph, Maximum multiplicity
ISSN
1081-3810
Volume
26
First Page
673
Last Page
691
Abstract
The minimum number of distinct eigenvalues, taken over all real symmetric matrices compatible with a given graph G, is denoted by q(G). Using other parameters related to G, bounds for q(G) are proven and then applied to deduce further properties of q(G). It is shown that there is a great number of graphs G for which q(G)=2. For some families of graphs, such as the join of a graph with itself, complete bipartite graphs, and cycles, this minimum value is obtained. Moreover, examples of graphs Gare provided to show that adding and deleting edges or vertices can dramatically change the value ofq(G). Finally, the set of graphs Gwith q(G) near the number of vertices is shown to be a subset of known families of graphs with small maximum multiplicity
NSUWorks Citation
Ahmadi, Bahman; Alinaghipour, Fatehmeh; Cavers, Michael S.; Fallat, Shaun; Meagher, Karen; and Nasserasr, Shahla, "Minimum Number of Distinct Eigenvalues of Graphs" (2013). Mathematics Faculty Articles. 75.
https://nsuworks.nova.edu/math_facarticles/75
DOI
10.13001/1081-3810.1679
COinS
Comments
AMS subject classifications. 05C50, 15A18