Mathematics Faculty Articles
Bifurcation Analysis for a One Predator and Two Prey Model with Prey-Taxis
Document Type
Article
Publication Date
2021
Publication Title
Journal of Biological Systems
Keywords
Competing species, Predator prey, Prey-Taxis, Pattern Formation, Bifurcation
ISSN
1793-6470
Volume
29
Issue/No.
2
First Page
495
Last Page
524
Abstract
This paper concerns spatio-temporal pattern formation in a model for two competing prey populations with a common predator population whose movement is biased by direct prey-taxis mechanisms. By pattern formation, we mean the existence of stable, positive non-constant equilibrium states, or nontrivial stable time-periodic states. The taxis can be either repulsive or attractive and the population interaction dynamics is fairly general. Both types of pattern formation arise as one-parameter bifurcating solution branches from an unstable constant stationary state. In the absence of our taxis mechanism, the coexistence positive steady state, under suitable conditions, is locally asymptotically stable. In the presence of a sufficiently strong repulsive prey defense, pattern formation will develop. However, in the attractive taxis case, the attraction needs to be sufficiently weak for pattern formation to develop. Our method is an application of the Crandall–Rabinowitz and the Hopf bifurcation theories. We establish the existence of both types of branches and develop expressions for determining their stability.
NSUWorks Citation
Haskell, Evan and Bell, Jonathan, "Bifurcation Analysis for a One Predator and Two Prey Model with Prey-Taxis" (2021). Mathematics Faculty Articles. 312.
https://nsuworks.nova.edu/math_facarticles/312
DOI
10.1142/S0218339021400131
Comments
AMSC: 35K59, 35Q92, 92D25