Mathematics Faculty Articles
Discovery of Mixed Pharmacology Melanocortin-3 Agonists and Melanocortin-4 Receptor Tetrapeptide Antagonist Compounds (TACOs) Based on the Sequence Ac-Xaa1-Arg-(pI)DPhe-Xaa4-NH2
Document Type
Article
Publication Date
4-28-2017
Publication Title
Journal of Medicinal Chemistry
ISSN
0022-2623
Volume
60
First Page
4342
Last Page
4357
Abstract
The centrally expressed melanocortin-3 and -4 receptors (MC3R/MC4R) have been studied as possible targets for weight management therapies, with a preponderance of studies focusing on the MC4R. Herein, a novel tetrapeptide scaffold [Ac-Xaa1-Arg-(pI)DPhe-Xaa4-NH2] is reported. The scaffold was derived from results obtained from a MC3R mixture-based positional scanning campaign. From these results, a set of 48 tetrapeptides were designed and pharmacologically characterized at the mouse melanocortin-1, -3, -4, and -5 receptors. This resulted in the serendipitous discovery of nine compounds that were MC3R agonists (EC50 < 1000 nM) and MC4R antagonists (5.7 < pA2 < 7.8). The three most potent MC3R agonists, 18 [Ac-Arg-Arg-(pI)DPhe-Tic-NH2], 1 [Ac-His-Arg-(pI)DPhe-Tic-NH2], and 41 [Ac-Arg-Arg-(pI)DPhe-DNal(2′)-NH2] were more potent (EC50 < 73 nM) than the melanocortin tetrapeptide Ac-His-DPhe-Arg-Trp-NH2. This template contains a sequentially reversed “Arg-(pI)DPhe” motif with respect to the classical “Phe-Arg” melanocortin signaling motif, which results in pharmacology that is first-in-class for the central melanocortin receptors.
NSUWorks Citation
Doering, Skye R.; Freeman, Katie T.; Schnell, Sathya M.; Haslach, Erica M.; Dirain, Marvin; Debevec, Ginamarie; Geer, Phaedra; Santos, Radleigh; Giulianotti, Marc A.; Pinilla, Clemencia; Appel, Jon R.; Speth, Robert Charles; Houghten, Richard A.; and Haskell-Luevano, Carrie, "Discovery of Mixed Pharmacology Melanocortin-3 Agonists and Melanocortin-4 Receptor Tetrapeptide Antagonist Compounds (TACOs) Based on the Sequence Ac-Xaa1-Arg-(pI)DPhe-Xaa4-NH2" (2017). Mathematics Faculty Articles. 242.
https://nsuworks.nova.edu/math_facarticles/242
DOI
10.1021/acs.jmedchem.7b00301