Mathematics Faculty Articles
Document Type
Article
Publication Date
2016
Publication Title
Acta Mathematica Universitatis Comenianae
Keywords
Hilbert spaces, Tensor product of operators, Schmidt decomposition, Compact operators, Inverse problems
ISSN
0862-9544
First Page
1
Last Page
10
Abstract
Inverse formulas for the tensor product are used to develop an algorithm to compute Schmidt decompositions of Finite Schmidt Rank (FSR) bounded operators on the tensor product of separable Hilbert spaces. The algorithm is then applied to solve inverse problems related to the tensor product of bounded operators. In particular, we show how properties of a FSR bounded operator are reflected by the operators involved in its Schmidt decomposition. These properties include compactness of FSR bounded operators and convergence of sequences whose terms are FSR bounded operators.
NSUWorks Citation
Bourouihiya, Abdelkrim, "Decomposition of Finite Schmidt Rank Bounded Operators on the Tensor Product of Separable Hilbert Spaces" (2016). Mathematics Faculty Articles. 209.
https://nsuworks.nova.edu/math_facarticles/209
ORCID ID
0000-0002-5456-7745