Document Type

Article

Publication Date

4-11-2023

Publication Title

BMC Bioinformatics

Keywords

Clinical datasets, Feature selection, Gene selection, Machine learning, Optimization algorithm, Voting-based approach

ISSN

1471-2105

Volume

24

Issue/No.

1

First Page

140

Abstract

BACKGROUND: Different machine learning techniques have been proposed to classify a wide range of biological/clinical data. Given the practicability of these approaches accordingly, various software packages have been also designed and developed. However, the existing methods suffer from several limitations such as overfitting on a specific dataset, ignoring the feature selection concept in the preprocessing step, and losing their performance on large-size datasets. To tackle the mentioned restrictions, in this study, we introduced a machine learning framework consisting of two main steps. First, our previously suggested optimization algorithm (Trader) was extended to select a near-optimal subset of features/genes. Second, a voting-based framework was proposed to classify the biological/clinical data with high accuracy. To evaluate the efficiency of the proposed method, it was applied to 13 biological/clinical datasets, and the outcomes were comprehensively compared with the prior methods.

RESULTS: The results demonstrated that the Trader algorithm could select a near-optimal subset of features with a significant level of p-value < 0.01 relative to the compared algorithms. Additionally, on the large-sie datasets, the proposed machine learning framework improved prior studies by ~ 10% in terms of the mean values associated with fivefold cross-validation of accuracy, precision, recall, specificity, and F-measure.

CONCLUSION: Based on the obtained results, it can be concluded that a proper configuration of efficient algorithms and methods can increase the prediction power of machine learning approaches and help researchers in designing practical diagnosis health care systems and offering effective treatment plans.

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

DOI

10.1186/s12859-023-05274-4

Peer Reviewed

Share

COinS