CCE Faculty Articles

Dynamic Maintenance of Multidimensional Range Data Partitioning for Parallel Data Processing

Document Type

Article

Publication Title

Proceedings of the 1st ACM International Workshop on Data Warehousing and OLAP

ISSN

1-58113-120-8

Publication Date

11-7-1998

Abstract

Star schema has been a typical model for both online transaction processing in traditional databases and online analytical processing in large data warehouses. In the star schema, the dominant VO~UIIXS of data are stored in the relationship table in terms of databases or the fact table in terms of data warehouses. Sometimes this relationship or fact table is called multidimensional table, cube, or data set. In this paper, we present a parallel method to partition the fact table in terms of multidimensional space for parallel star query processing. Also a dynamic approach to maintain load balance among all the processors is given in terms of a set of heuristics for the cases when the fact table undergoes frequent updates such as insertions/deletions. The multidimensionally partitioned data sets in the fact table are stored as leaf nodes in a multidimensional range tree, and each data set stored in the leaf node is mapped into each processor for parallel data partitioning and star query processing. As far as load balance is concerned in each of processors, we try to maintain the distribution of data volumes m uniform as possible by the set of heuristics for the star query processing in OLAP.

DOI

10.1145/294260.294275

First Page

72

Last Page

79

This document is currently not available here.

Find in your library

Share

COinS