CCE Faculty Articles
An LPV Modeling and Identification Approach to Leakage Detection in High Pressure Natural Gas Transportation Networks
Document Type
Article
Publication Title
IEEE Transactions on Control Systems Technology
ISSN
1063-6536
Publication Date
1-2011
Abstract
In this paper a new approach to gas leakage detection in high pressure natural gas transportation networks is proposed. The pipeline is modelled as a Linear Parameter Varying (LPV) System driven by the source node massflow with the gas inventory variation in the pipe (linepack variation, proportional to the pressure variation) as the scheduling parameter. The massflow at the offtake node is taken as the system output. The system is identified by the Successive Approximations LPV System Subspace Identifi- cation Algorithm which is also described in this paper. The leakage is detected using a Kalman filter where the fault is treated as an augmented state. Given that the gas linepack can be estimated from the massflow balance equation, a differential method is proposed to improve the leakage detector effectiveness. A small section of a gas pipeline crossing Portugal in the direction South to North is used as a case study. LPV models are identified from normal operational data and their accuracy is analyzed. The proposed LPV Kalman filter based methods are compared with a standard mass balance method in a simulated 10% leakage detection scenario. The Differential Kalman Filter method proved to be highly efficient.
DOI
10.1109/TCST.2010.2077293
Volume
19
Issue
1
First Page
77
Last Page
92
NSUWorks Citation
Ramos, Jose A.; Lopes dos Santos, Paulo; Azevedo Perdicoulis, Teresa Paula; Martins de Carvalho, Jorge L.; Jank, Gerhard; and Milhinhos, J., "An LPV Modeling and Identification Approach to Leakage Detection in High Pressure Natural Gas Transportation Networks" (2011). CCE Faculty Articles. 432.
https://nsuworks.nova.edu/gscis_facarticles/432