CCE Theses and Dissertations

Campus Access Only

All rights reserved. This publication is intended for use solely by faculty, students, and staff of Nova Southeastern University. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, now known or later developed, including but not limited to photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the author or the publisher.

Quality Market: Design and Field Study of Prediction Market for Software Quality Control

Date of Award

2010

Document Type

Dissertation - NSU Access Only

Degree Name

Doctor of Philosophy in Information Science (DISC)

Department

Graduate School of Computer and Information Sciences

Advisor

Easwar Nyshadham

Committee Member

Sumitra Mukherjee

Committee Member

Amon B Seagull

Keywords

Estimation, Prediction Market, Software Quality

Abstract

Given the increasing competition in the software industry and the critical consequences of software errors, it has become important for companies to achieve high levels of software quality. While cost reduction and timeliness of projects continue to be important measures, software companies are placing increasing attention on identifying the user needs and better defining software quality from a customer perspective. Software quality goes beyond just correcting the defects that arise from any deviations from the functional requirements. System engineers also have to focus on a large number of quality requirements such as security, availability, reliability, maintainability, performance and temporal correctness requirements. The fulfillment of these run-time observable quality requirements is important for customer satisfaction and project success.

Generating early forecasts of potential quality problems can have significant benefits to quality improvement. One approach to better software quality is to improve the overall development cycle in order to prevent the introduction of defects and improve run-time quality factors. Many methods and techniques are available which can be used to forecast quality of an ongoing project such as statistical models, opinion polls, survey methods etc. These methods have known strengths and weaknesses and accurate forecasting is still a major issue.

This research utilized a novel approach using prediction markets, which has proved useful in a variety of situations. In a prediction market for software quality, individual estimates from diverse project stakeholders such as project managers, developers, testers, and users were collected at various points in time during the project. Analogous to the financial futures markets, a security (or contract) was defined that represents the quality requirements and various stakeholders traded the securities using the prevailing market price and their private information. The equilibrium market price represents the best aggregate of diverse opinions. Among many software quality factors, this research focused on predicting the software correctness.

The goal of the study was to evaluate if a suitably designed prediction market would generate a more accurate estimate of software quality than a survey method which polls subjects. Data were collected using a live software project in three stages: viz., the requirements phase, an early release phase and a final release phase. The efficacy of the market was tested with results from prediction markets by (i) comparing the market outcomes to final project outcome, and (ii) by comparing market outcomes to results of opinion poll.

Analysis of data suggests that predictions generated using the prediction market are significantly different from those generated using polls at early release and final release stages. The prediction market estimates were also closer to the actual probability estimates for quality compared to the polls. Overall, the results suggest that suitably designed prediction markets provide better forecasts of potential quality problems than polls.

This document is currently not available here.

To access this thesis/dissertation you must have a valid nova.edu OR mynsu.nova.edu email address and create an account for NSUWorks.

Free My Thesis

If you are the author of this work and would like to grant permission to make it openly accessible to all, please click the Free My Thesis button.

  Contact Author

  Link to NovaCat

Share

COinS