CCE Theses and Dissertations

Campus Access Only

All rights reserved. This publication is intended for use solely by faculty, students, and staff of Nova Southeastern University. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, now known or later developed, including but not limited to photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the author or the publisher.

Date of Award

2013

Document Type

Dissertation - NSU Access Only

Degree Name

Doctor of Philosophy in Computer Information Systems (DCIS)

Department

Graduate School of Computer and Information Sciences

Advisor

Francisco Mitropoulos

Committee Member

Sumitra Mukherjee

Committee Member

Junping Sun

Keywords

Aspect Mining, Clustering, Genetic Algorithms, Software Engineering, Support Vector Machine

Abstract

The main purpose of object-oriented programming is to use encapsulation to reduce the amount of coupling within each object. However, object-oriented programming has some weaknesses in this area. To address this shortcoming, researchers have proposed an approach known as aspect-oriented programming (AOP). AOP is intended to reduce the amount of tangled code within an application by grouping similar functions into an aspect. To demonstrate the powerful aspects of AOP, it is necessary to extract aspect candidates from current object-oriented applications.

Many different approaches have been proposed to accomplish this task. One of such approaches utilizes vector based clustering to identify the possible aspect candidates. In this study, two different types of vectors are applied to two different vector-based clustering techniques. In this approach, each method in a software system S is represented by a d-dimensional vector. These vectors take into account the Fan-in values of the methods as well as the number of calls made to individual methods within the classes in software system S. Then a semi-supervised clustering approach known as Support Vector Clustering is applied to the vectors. In addition, an improved K-means clustering approach which is based on Genetic Algorithms is also applied to these vectors. The results obtained from these two approaches are then evaluated using standard metrics for aspect mining.

In addition to introducing two new clustering based approaches to aspect mining, this research investigates the effectiveness of the currently known metrics used in aspect mining to evaluate a given vector based approach. Many of the metrics currently used for aspect mining evaluations are singleton metrics. Such metrics evaluate a given approach by taking into account only one aspect of a clustering technique. This study, introduces two different sets of metrics by combining these singleton measures. The iDIV metric combines the Diversity of a partition (DIV), Intra-cluster distance of a partition (IntraD), and the percentage of the number of methods analyzed (PAM) values to measure the overall effectiveness of the diversity of the partitions. While the iDISP metric combines the Dispersion of crosscutting concerns (DISP) along with Inter-cluster distance of a partition (InterD) and the PAM values to measure the quality of the clusters formed by a given method. Lastly, the oDIV and oDISP metrics introduced, take into account the complexity of the algorithms in relation with the DIV and DISP values.

By comparing the obtained values for each of the approaches, this study is able to identify the best performing method as it pertains to these metrics.

To access this thesis/dissertation you must have a valid nova.edu OR mynsu.nova.edu email address and create an account for NSUWorks.

Free My Thesis

If you are the author of this work and would like to grant permission to make it openly accessible to all, please click the Free My Thesis button.

  Contact Author

  Link to NovaCat

Share

COinS