CCE Theses and Dissertations
Date of Award
2023
Document Type
Dissertation
Degree Name
Doctor of Philosophy (PhD)
Department
College of Computing and Engineering
Advisor
Francisco Mitropoulos
Committee Member
Michael Laszlo
Committee Member
Sumitra Mukherjee
Keywords
Code Completion, Machine Learning, Natural Language Processing, Neural Networks, Python Modules, Source Code Analysis
Abstract
Contemporary software development with modern programming languages leverages Integrated Development Environments, smart text editors, and similar tooling with code completion capabilities to increase the efficiency of software developers. Recent code completion research has shown that the combination of natural language processing with recurrent neural networks configured with long short-term memory can improve the accuracy of code completion predictions over prior models. It is well known that the accuracy of predictive systems based on training data is correlated to the quality and the quantity of the training data. This dissertation demonstrates that by expanding the training data set to include more references to specific Python third-party modules, the quality of the predictions increase for those specific Python third-party modules without degrading the quality of predictions of the originally represented modules.
NSUWorks Citation
David Buksbaum. 2023. Increasing Code Completion Accuracy in Pythia Models for Non-Standard Python Libraries. Doctoral dissertation. Nova Southeastern University. Retrieved from NSUWorks, College of Computing and Engineering. (1188)
https://nsuworks.nova.edu/gscis_etd/1188.