Faculty Articles

Water-Mediated Correlations in DNA-Enzyme Interactions

Document Type

Article

Publication Date

1-2018

Publication Title

Physics Letters A

Volume

382

Issue/Number

1

First Page

33

ISSN

0375-9601

Last Page

43

Abstract/Excerpt

In this letter we consider dipole-mediated correlations between DNA and enzymes in the context of their water environment. Such correlations emerge from electric dipole-dipole interactions between aromatic ring structures in DNA and in enzymes. We show that there are matching collective modes between DNA and enzyme dipole fields, and that a dynamic time-averaged polarization vanishes in the water dipole field only if either DNA, enzyme, or both are absent from the sample. This persistent field may serve as the electromagnetic image that, in popular colloquialisms about DNA biochemistry, allows enzymes to “scan” or “read” the double helix. Topologically nontrivial configurations in the coherent ground state requiring clamplike enzyme behavior on the DNA may stem, ultimately, from spontaneously broken gauge symmetries.

DOI

https://doi.org/10.1016/j.physleta.2017.10.038

Peer Reviewed

Find in your library

Share

COinS