Faculty Articles
Microtubule Ionic Conduction and its Implications for Higher Cognitive Functions
Document Type
Article
Publication Date
1-1-2010
Publication Title
Journal of Integrative Neuroscience
Volume
9
Issue/Number
2
First Page
103
ISSN
0219-6352
Last Page
122
Abstract/Excerpt
The neuronal cytoskeleton has been hypothesized to play a role in higher cognitive functions including learning, memory and consciousness. Experimental evidence suggests that both microtubules and actin filaments act as biological electrical wires that can transmit and amplify electric signals via the flow of condensed ion clouds. The potential transmission of electrical signals via the cytoskeleton is of extreme importance to the electrical activity of neurons in general. In this regard, the unique structure, geometry and electrostatics of microtubules are discussed with the expected impact on their specific functions within the neuron. Electric circuit models of ionic flow along microtubules are discussed in the context of experimental data, and the specific importance of both the tubulin C-terminal tail regions, and the nano-pore openings lining the microtubule wall is elucidated. Overall, these recent results suggest that ions, condensed around the surface of the major filaments of the cytoskeleton, flow along and through microtubules in the presence of potential differences, thus acting as transmission lines propagating intracellular signals in a given cell. The significance of this conductance to the functioning of the electrically active neuron, and to higher cognitive function is also discussed.
NSUWorks Citation
Craddock, T. J.,
Tuszynski, J. A.,
Priel, A.,
Freedman, H.
(2010). Microtubule Ionic Conduction and its
Implications for Higher Cognitive Functions. Journal of Integrative Neuroscience, 9(2), 103-122.
Available at: https://nsuworks.nova.edu/cps_facarticles/1304