Chemistry and Physics Faculty Articles
Title
The Impact of Three New Quaternary Sulfides on the Current Predictive Tools for Structure and Composition of Diamond-Like Materials
Document Type
Article
Publication Date
10-15-2013
Publication Title
Journal of Alloys and Compounds
Keywords
Radius, Diamond-like, Semiconductor, Kesterite, Stannite, Sulfide
ISSN
0925-8388
Volume
574
First Page
495
Last Page
503
Abstract
Iron-containing diamond-like materials Ag2FeSiS4, Li2FeSnS4, and Li2FeGeS4 were synthesized for the first time via high-temperature, solid-state synthesis and found to adopt the wurtz–kesterite structure, crystallizing in the noncentrosymmetric space group Pn. These materials are considered in the broader context of design principles for new cubic- and hexagonal-derived diamond-like materials. All three of these new compounds violate Pauling’s radius ratio rule and Pfitzner’s tetrahedral volume theory. An evaluation of the adherence of over 40 published quaternary diamond-like structures to Pauling’s radius ratio rule and Pfitzner’s tetrahedral volume theory reveals that tetrahedral structures can often be generated even though these ideals are violated. To assess the radius ratios in diamond-like structures, an appropriate radii set must be selected. Accordingly, five radii sets have been investigated for accuracy in predicting metal–sulfur bond distances in diamond-like materials. Furthermore, a crystal radius of 1.63 Å for four-coordinate S2− has been calculated using the metal–sulfur bond lengths of quaternary diamond-like materials and is proposed as an addition to the popular Shannon radii set.
NSUWorks Citation
Brunetta, C. D., Brant, J. A., Rosmus, K. A., Henline, K. M., Karey, E., MacNeil, J. H., & Aitken, J. A. (2013). The Impact of Three New Quaternary Sulfides on the Current Predictive Tools for Structure and Composition of Diamond-Like Materials. Journal of Alloys and Compounds, 574, 495 - 503. https://doi.org/10.1016/j.jallcom.2013.05.141. Retrieved from https://nsuworks.nova.edu/cnso_chemphys_facarticles/163
ORCID ID
0000-0001-7825-8667
DOI
10.1016/j.jallcom.2013.05.141