Biology Faculty Articles

Document Type

Article

Publication Date

9-10-2019

Publication Title

FEMS Microbiology Ecology

Keywords

Gulf of Mexico, Ceratioidei, 16S rRNA, Bioluminescence, Symbiosis, Anglerfish, Microbiome

ISSN

0168-6496

Volume

fiz146

Abstract

The interdependence of diverse organisms through symbiosis reaches even the deepest parts of the oceans. As part of the DEEPEND project (deependconsortium.org) research on deep Gulf of Mexico biodiversity, we profiled the bacterial communities (‘microbiomes’) and luminous symbionts of 36 specimens of adult and larval deep-sea anglerfishes of the suborder Ceratioidei using 16S rDNA. Transmission Electron Microscopy was used to characterize the location of symbionts in adult light organs (esca). Whole larval microbiomes, and adult skin and gut microbiomes, were dominated by bacteria in the genera Moritella and Pseudoalteromonas genera. 16S rDNA sequencing results from adult fishes corroborate the previously published identity of ceratioid bioluminescent symbionts and support findings that these symbionts do not consistently exhibit host specificity at the host family level. Bioluminescent symbiont amplicon sequence variants (ASVs) were absent from larval ceratioid samples, but were found at all depths in the seawater, with a highest abundance found at mesopelagic depths. As adults spend the majority of their lives in the meso and bathypelagic, the trend in symbiont abundance is consistent with their life history. These findings support the hypothesis that bioluminescent symbionts are not present throughout host development, and that ceratioids acquire their bioluminescent symbionts from the environment.

Comments

© FEMS 2019. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

Creative Commons License

Creative Commons Attribution-NonCommercial 4.0 International License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License

ORCID ID

0000-0002-5280-7071, 0000-0002-1637-4125

ResearcherID

F-8809-2011

DOI

10.1093/femsec/fiz146

Peer Reviewed

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.