Biology Faculty Articles

Document Type

Article

Publication Date

1-2007

Publication Title

PLoS ONE

ISSN

1932-6203

Volume

3

Issue/No.

1 e19

First Page

123

Last Page

132

Abstract

Human apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3 (Apobec3) antiretroviral factors cause hypermutation of proviral DNA leading to degradation or replication-incompetent HIV-1. However, HIV-1 viral infectivity factor (Vif) suppresses Apobec3 activity through the Cullin 5-Elongin B-Elongin C E3 ubiquitin ligase complex. We examined the effect of genetic polymorphisms in the CUL5 gene (encoding Cullin 5 protein) on AIDS disease progression in five HIV-1 longitudinal cohorts. A total of 12 single nucleotide polymorphisms (SNPs) spanning 93 kb in the CUL5 locus were genotyped and their haplotypes inferred. A phylogenetic network analysis revealed that CUL5 haplotypes were grouped into two clusters of evolutionarily related haplotypes. Cox survival analysis and mixed effects models were used to assess time to AIDS outcomes and CD4+ T cell trajectories, respectively. Relative to cluster I haplotypes, the collective cluster II haplotypes were associated with more rapid CD4+ T cell loss (relative hazards [RH] = 1.47 and p = 0.009), in a dose-dependent fashion. This effect was mainly attributable to a single cluster II haplotype (Hap10) (RH = 2.49 and p = 0.00001), possibly due to differential nuclear protein–binding efficiencies of a Hap10-specifying SNP as indicated by a gel shift assay. Consistent effects were observed for CD4+ T cell counts and HIV-1 viral load trajectories over time. The findings of both functional and genetic epidemiologic consequences of CUL5 polymorphism on CD4+ T cell and HIV-1 levels point to a role for Cullin 5 in HIV-1 pathogenesis and suggest interference with the Vif-Cullin 5 pathway as a possible anti-HIV-1 therapeutic strategy.

Comments

©2007 An et al. This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose.

Additional Comments

National Cancer Institute contract #: N01-CO-12400; National Institute on Drug Abuse grant #: DA-04334

ORCID ID

0000-0001-7353-8301

ResearcherID

N-1726-2015

Peer Reviewed

Find in your library

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.