Biology Faculty Articles
Title
Evolution of CRISPs Associated with Toxicoferan-Reptilian Venom and Mammalian Reproduction
Document Type
Article
Publication Date
7-2012
Publication Title
Molecular Biology and Evolution
Keywords
CRISP, Positive selection, Toxicoferan-reptilian venom evolution, Adaptive evolution, Cysteine-rich secretory proteins, Mammalian reproduction, Mammalian immune system
ISSN
0737-4038
Volume
29
Issue/No.
7
First Page
1807
Last Page
1822
Abstract
Cysteine-rich secretory proteins (CRISPs) are glycoproteins found exclusively in vertebrates and have broad diversified functions. They are hypothesized to play important roles in mammalian reproduction and in reptilian venom, where they disrupt homeostasis of the prey through several mechanisms, including among others, blockage of cyclic nucleotide-gated and voltage-gated ion channels and inhibition of smooth muscle contraction. We evaluated the molecular evolution of CRISPs in toxicoferan reptiles at both nucleotide and protein levels relative to their nonvenomous mammalian homologs. We show that the evolution of CRISP gene in these reptiles is significantly influenced by positive selection and in snakes (ω = 3.84) more than in lizards (ω = 2.33), whereas mammalian CRISPs were under strong negative selection (CRISP1 = 0.55, CRISP2 = 0.40, and CRISP3 = 0.68). The use of ancestral sequence reconstruction, mapping of mutations on the three-dimensional structure, and detailed evaluation of selection pressures suggests that the toxicoferan CRISPs underwent accelerated evolution aided by strong positive selection and directional mutagenesis, whereas their mammalian homologs are constrained by negative selection. Gene and protein-level selection analyses identified 41 positively selected sites in snakes and 14 sites in lizards. Most of these sites are located on the molecular surface (nearly 76% in snakes and 79% in lizards), whereas the backbone of the protein retains a highly conserved structural scaffold. Nearly 46% of the positively selected sites occur in the cysteine-rich domain of the protein. This directional mutagenesis, where the hotspots of mutations are found on the molecular surface and functional domains of the protein, acts as a diversifying mechanism for the exquisite biological targeting of CRISPs in toxicoferan reptiles. Finally, our analyses suggest that the evolution of toxicoferan-CRISP venoms might have been influenced by the specific predatory mechanism employed by the organism. CRISPs in Elapidae, which mostly employ neurotoxins, have experienced less positive selection pressure (ω = 2.86) compared with the “nonvenomous” colubrids (ω = 4.10) that rely on grip and constriction to capture the prey, and the Viperidae, a lineage that mostly employs haemotoxins (ω = 4.19). Relatively lower omega estimates in Anguimorph lizards (ω = 2.33) than snakes (ω = 3.84) suggests that lizards probably depend more on pace and powerful jaws for predation than venom.
Additional Comments
Fundação para a Ciência e a Tecnologia grant and project #s: SFRH/BD/61959/2009, PTDC/BIA-BDE/69144/2006 (FCOMP-01-0124-FEDER-007065), PTDC/AAC-AMB/104983/2008 (FCOMP-01-0124-FEDER-008610), PTDC/AAC-AMB/121301/2010 (FCOMP-01-0124-FEDER-019490)
NSUWorks Citation
Sunagar, Kartik; Warren E. Johnson; Stephen J. O'Brien; Vitor Vasconcelos; and Agostinho Antunes. 2012. "Evolution of CRISPs Associated with Toxicoferan-Reptilian Venom and Mammalian Reproduction." Molecular Biology and Evolution 29, (7): 1807-1822. https://nsuworks.nova.edu/cnso_bio_facarticles/433
ORCID ID
0000-0001-7353-8301
ResearcherID
N-1726-2015
Comments
© The Author 2012. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved.