Biology Faculty Articles

Document Type

Article

Publication Date

6-15-2023

Publication Title

ICES Journal of Marine Science

Keywords

billfish, blue marlin, conservation, fisheries, sailfish, satellite telemetry.

ISSN

1095-9289

First Page

fsad090

Abstract

Blue marlin (Makaira nigricans) and sailfish (Istiophorus platypterus) are ecologically important predators and valuable species throughout the world’s recreational, commercial, and subsistence fisheries. Comparing multi-species vertical habitat use can inform ecological uncertainties such as inter-species competition, as well as relative vulnerabilities to fishing activities. In this study, we identified key differences in both depth use and which environmental variables drive these selections, which highlights the variability in the catchability both as target species in recreational fisheries and bycatch in commercial fisheries. To understand these two species’ vertical habitat use, we examined depth profiles from 26 sailfish and 48 blue marlin tagged with pop-up satellite archival tags deployed in the Eastern Tropical Pacific Ocean. While both species are surface-oriented, we found evidence of vertical niche partitioning where sailfish spend more time at deeper depths than blue marlin. Blue marlin recorded an average mean depth of 18.5 m (±10.8 m) during daytime and 5.2 m (±5.5 m) at nighttime (Figure 31a), while sailfish recorded an average mean depth of 23.6 m (±11.1 m) during daytime and 6.45 m (±4.64 m) at nighttime. Generalized additive mixed models fitted to predict mean and max depth revealed sea level anomaly (SLA), oxygen, sea surface temperature, and mixed layer depth as significant predictors of vertical habitat use for both species. We also examined catch logs from three recreational fishing lodges in Central America to understand the influence of environmental conditions on billfish sightings per unit effort. For blue marlin and sailfish, SLA was a significant predictor in each of the four depth models (mean day, mean night, max day, max night). SLA was the variable with highest percent deviance explained for all four sailfish depth models and three of the four blue marlin depth models and had a positive relationship with all response variables for all four blue marlin depth models and three sailfish depth models (mean daytime, max daytime, max nighttime), where higher positive SLA values were associated with deeper depth responses.

Comments

This is an open access article distributed under the terms of the Creative Commons CC BY license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

You are not required to obtain permission to reuse this article.

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

DOI

https://doi.org/10.1093/icesjms/fsad090

Peer Reviewed

Find in your library

Included in

Biology Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.