Biology Faculty Articles

Document Type

Article

Publication Date

4-20-2023

Publication Title

eLife

ISSN

2050-084X

Volume

12

First Page

e83664

Abstract

Most bacteria exist and interact within polymicrobial communities. These interactions produce unique compounds, increase virulence and augment antibiotic resistance. One community associated with negative healthcare outcomes consists of Pseudomonas aeruginosa and Staphylococcus aureus. When co-cultured, virulence factors secreted by P. aeruginosa reduce metabolism and growth in S. aureus. When grown in vitro, this allows P. aeruginosa to drive S. aureus toward extinction. However, when found in vivo, both species can co-exist. Previous work has noted that this may be due to altered gene expression or mutations. However, little is known about how the growth environment could influence the co-existence of both species. Using a combination of mathematical modeling and experimentation, we show that changes to bacterial growth and metabolism caused by differences in the growth environment can determine the final population composition. We found that changing the carbon source in growth media affects the ratio of ATP to growth rate for both species, a metric we call absolute growth. We found that as a growth environment increases the absolute growth for one species, that species will increasingly dominate the co-culture. This is due to interactions between growth, metabolism, and metabolism-altering virulence factors produced by P. aeruginosa. Finally, we show that the relationship between absolute growth and the final population composition can be perturbed by altering the spatial structure in the community. Our results demonstrate that differences in growth environment can account for conflicting observations regarding the co-existence of these bacterial species in the literature, provides support for the intermediate disturbance hypothesis, and may offer a novel mechanism to manipulate polymicrobial populations.

Comments

Copyright Pajon, Fortoul et al. This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ORCID ID

0000-0003-2744-7390

DOI

10.7554/eLife.83664.sa2

Peer Reviewed

Included in

Biology Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.