Biology Faculty Articles
Document Type
Article
Publication Date
4-20-2023
Publication Title
eLife
ISSN
2050-084X
Volume
12
First Page
e83664
Abstract
Most bacteria exist and interact within polymicrobial communities. These interactions produce unique compounds, increase virulence and augment antibiotic resistance. One community associated with negative healthcare outcomes consists of Pseudomonas aeruginosa and Staphylococcus aureus. When co-cultured, virulence factors secreted by P. aeruginosa reduce metabolism and growth in S. aureus. When grown in vitro, this allows P. aeruginosa to drive S. aureus toward extinction. However, when found in vivo, both species can co-exist. Previous work has noted that this may be due to altered gene expression or mutations. However, little is known about how the growth environment could influence the co-existence of both species. Using a combination of mathematical modeling and experimentation, we show that changes to bacterial growth and metabolism caused by differences in the growth environment can determine the final population composition. We found that changing the carbon source in growth media affects the ratio of ATP to growth rate for both species, a metric we call absolute growth. We found that as a growth environment increases the absolute growth for one species, that species will increasingly dominate the co-culture. This is due to interactions between growth, metabolism, and metabolism-altering virulence factors produced by P. aeruginosa. Finally, we show that the relationship between absolute growth and the final population composition can be perturbed by altering the spatial structure in the community. Our results demonstrate that differences in growth environment can account for conflicting observations regarding the co-existence of these bacterial species in the literature, provides support for the intermediate disturbance hypothesis, and may offer a novel mechanism to manipulate polymicrobial populations.
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
NSUWorks Citation
Pajon, Camryn; Marla C. Fortoul; Gabriela Diaz-Tang; Estefania Marin Meneses; Ariane R. Kalifa; Elinor Sevy; Taniya Mariah; Brandon Toscan; Maili Marcelin; Daniella M. Hernandez; Melissa M. Marzouk; Allison J. Lopatkin; Omar T. Eldakar; and Robert Smith. 2023. "Interactions Between Metabolism and Growth Can Determine the Co-existence of Staphylococcus Aureus and Pseudomonas Aeruginosa." eLife 12, (): e83664. doi:10.7554/eLife.83664.sa2.
ORCID ID
0000-0003-2744-7390
DOI
10.7554/eLife.83664.sa2
Comments
Copyright Pajon, Fortoul et al. This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.