Biology Faculty Articles

Document Type

Article

Publication Date

3-2007

Publication Title

PLoS Genetics

Keywords

Hemoglobin, Alleles, Oxygen, Haplotypes, Deer, Linkage disequilibrium, Physiological adaptation, DNA sequence analysis

ISSN

1553-7390

Volume

3

Issue/No.

3

First Page

e45

Abstract

Elucidating genetic mechanisms of adaptation is a goal of central importance in evolutionary biology, yet few empirical studies have succeeded in documenting causal links between molecular variation and organismal fitness in natural populations. Here we report a population genetic analysis of a two-locus α-globin polymorphism that underlies physiological adaptation to high-altitude hypoxia in natural populations of deer mice, Peromyscus maniculatus. This system provides a rare opportunity to examine the molecular underpinnings of fitness-related variation in protein function that can be related to a well-defined selection pressure. We surveyed DNA sequence variation in the duplicated α-globin genes of P. maniculatus from high- and low-altitude localities (i) to identify the specific mutations that may be responsible for the divergent fine-tuning of hemoglobin function and (ii) to test whether the genes exhibit the expected signature of diversifying selection between populations that inhabit different elevational zones. Results demonstrate that functionally distinct protein alleles are maintained as a long-term balanced polymorphism and that adaptive modifications of hemoglobin function are produced by the independent or joint effects of five amino acid mutations that modulate oxygen-binding affinity.

Comments

©2007 Storz et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Additional Comments

NIH grant #: F32 HL68487-01; NSF grant #: DEB-0614342

ORCID ID

0000-0002-1270-6727

DOI

10.1371/journal.pgen.0030045

Peer Reviewed

Find in your library

Included in

Biology Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.