CCE Theses and Dissertations

Campus Access Only

All rights reserved. This publication is intended for use solely by faculty, students, and staff of Nova Southeastern University. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, now known or later developed, including but not limited to photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the author or the publisher.

Date of Award

2010

Document Type

Dissertation - NSU Access Only

Degree Name

Doctor of Philosophy in Computer Information Systems (DCIS)

Department

Graduate School of Computer and Information Sciences

Advisor

Sumitra Mukherjee

Committee Member

Michael J. Lazlo

Committee Member

Wei Li

Keywords

C5, CHAID, CART, Decision Tree, Inductive Learning Algorithms, Material Removal Rate, Predictive Modeling, Wire Electrical Discharge Machining

Abstract

Wire Electrical Discharge Machining (WEDM) is a nontraditional machining process used for machining intricate shapes in high strength and temperature resistive (HSTR) materials. WEDM provides high accuracy, repeatability, and a better surface finish; however the tradeoff is a very slow machining rate. Due to the slow machining rate in WEDM, machining tasks take many hours depending on the complexity of the job. Because of this, users of WEDM try to predict machining rate beforehand so that input parameter values can be pre-programmed to achieve automated machining. However, partial success with traditional methodologies such as thermal modeling, artificial neural networks, mathematical, statistical, and empirical models left this problem still open for further research and exploration of alternative methods. Also, earlier efforts in applying the decision tree rule induction algorithms for predicting the machining rate in WEDM had limitations such as use of coarse grained method of discretizing the target and exploration of only C4.5 as the learning algorithm.

The goal of this dissertation was to address the limitations reported in literature in using decision tree rule induction algorithms for WEDM. In this study, the three decision tree inductive algorithms C5.0, CART and CHAID have been applied for predicting material removal rate when the target was discretized into varied number of classes (two, three, four, and five classes) by three discretization methods. There were a total of 36 distinct combinations when learning algorithms, discretization methods, and number of classes in the target are combined. All of these 36 models have been developed and evaluated based on the prediction accuracy. From this research, a total of 21 models found to be suitable for WEDM that have prediction accuracy ranging from 71.43% through 100%. The models indentified in the current study not only achieved better prediction accuracy compared to previous studies, but also allows the users to have much better control over WEDM than what was previously possible. Application of inductive learning and development of suitable predictive models for WEDM by incorporating varied number of classes in the target, different learning algorithms, and different discretization methods have been the major contribution of this research.

To access this thesis/dissertation you must have a valid nova.edu OR mynsu.nova.edu email address and create an account for NSUWorks.

Free My Thesis

If you are the author of this work and would like to grant permission to make it openly accessible to all, please click the Free My Thesis button.

  Contact Author

  Link to NovaCat

Share

COinS