Title

The Application of Peptide Nucleic Acid Probes for Rapid Detection and Enumeration of Eubacteria, Staphylococcus aureus and Pseudomonas aeruginosa in Recreational Beaches of S. Florida

Document Type

Article

Publication Date

5-2004

Publication Title

Journal of Microbiological Methods

Keywords

Hybridization, Novel beach indicators, Chemiluminescence, Plate counting

ISSN

0167-7012

Volume

57

Issue/No.

2

First Page

157

Last Page

162

Abstract

A novel chemiluminescent in situ hybridization technique using peptide nucleic acids (PNA) was adapted for the detection of bacteria in beach sand and recreational waters in South Florida. The simultaneous detection and enumeration of eubacteria and the novel indicators, Staphylococcus aureus and Pseudomonas aeruginosa, was achieved within 6–8 h of processing. Following 5 h of incubation on TSA, soybean peroxidase-labeled peptide nucleic acid probes (Boston Probes, Boston, MA) targeting species-specific 16S rRNA sequences of P. aeruginosa and S. aureus were used to hybridize microcolonies of the target species in-situ. In addition, a universal probe for 16S rRNA sequences was used to target the eubacteria. Probes were detected after a light generating reaction with a chemiluminescent substrate and their presence recorded on Polaroid film. The probes showed limited cross-reactivity with mixed indigenous bacteria extracted from seawater and sand by shaking with phosphate-buffered saline (PBS). Specificity and cross-reactivity was tested on the reference bacterial genera Pseudomonas, Staphylococcus,Vibrio, Shigella, Salmonella, Acinetobacter, Enterobacter, Escherichia and Citrobacter. These tests confirmed that the probes were specific for the microorganisms of interest and were unaffected by high salt levels. The results of the PNA chemiluminescent in situ hybridization were compared with traditional plate count methods (PCM) for total ‘freshwater’ eubacteria, S. aureus and P. aeruginosa. Counts of eubacteria and S. aureus were comparable with numbers obtained from traditional plate counts but levels of P. aeruginosa were higher with PNA than with PCM. It is possible that PNA is more sensitive than PCM because it can detect microcolonies on the agar surface that never fully develop with the plate count method. We conclude that the in situ hybridization technique used here represents an important potential tool for the rapid monitoring of novel indicator organisms in beaches and recreational waters.

Comments

©2004 Published by Elsevier B.V.

Additional Comments

EPA grant #: R 828830

DOI

10.1016/j.mimet.2003.12.005

This document is currently not available here.

Peer Reviewed

Find in your library

Share

COinS