Marine & Environmental Sciences Faculty Articles

Peptide-Conjugated PAMAM Dendrimer as a Universal DNA Vaccine Platform to Target Antigen-Presenting Cells

Document Type

Article

Publication Date

12-15-2011

Publication Title

Cancer Research

ISSN

0008-5472

Volume

71

Issue/No.

24

First Page

7452

Last Page

7462

Abstract

DNA-based vaccines hold promise to outperform conventional antigen-based vaccines by virtue of many unique features. However, DNA vaccines have thus far fallen short of expectations, due in part to poor targeting of professional antigen-presenting cells (APC) and low immunogenicity. In this study, we describe a new platform for effective and selective delivery of DNA to APCs in vivo that offers intrinsic immune-enhancing characteristics. This platform is based on conjugation of fifth generation polyamidoamine (G5-PAMAM) dendrimers, a DNA-loading surface, with MHC class II–targeting peptides that can selectively deliver these dendrimers to APCs under conditions that enhance their immune stimulatory potency. DNA conjugated with this platform efficiently transfected murine and human APCs in vitro. Subcutaneous administration of DNA-peptide-dendrimer complexes in vivo preferentially transfected dendritic cells (DC) in the draining lymph nodes, promoted generation of high affinity T cells, and elicited rejection of established tumors. Taken together, our findings show how PAMAM dendrimer complexes can be used for high transfection efficiency and effective targeting of APCs in vivo, conferring properties essential to generate effective DNA vaccines.

Comments

©2011 American Association for Cancer Research.

Additional Comments

This work was support by the Sylvester Cancer Center, the Coulter Center, and the Susan Komen for the cure foundation award number KG090350.

DOI

10.1158/0008-5472.CAN-11-1766

This document is currently not available here.

Peer Reviewed

Find in your library

Share

COinS