Marine & Environmental Sciences Faculty Articles

Document Type


Publication Date


Publication Title

Perspectives in Carbonate Geology: A Tribute to the Career of Robert Nathan Ginsburg


Arabian Gulf, Leitha Limestone, Paratethys, Markov Chain, Comparative Sedimentology, Walther's Law, Landscape Pattern, Remote Sensing, Carbonate Sedimentation


IAS Special Publication 41


If, as comparative sedimentology maintains, knowledge of the Recent can sometimes be helpful to explain the past (and vice-versa), common quantitative denominators might exist between Recent and fossil systems. It may also be possible to describe dynamics and find linkages between space and time with a unique set of quantitative tools. To explore such conceptual links, spatial facies patterns mapped using satellite imagery were compared with temporal patterns in analogous ancient outcropping facies using Markov chains and graphs. Landsat and Ikonos satellite imagery was used to map benthic facies in a nearshore carbonate ramp (Ras Hasyan) and offshore platform system (Murrawah, Al Gharbi) in the Recent Arabian Gulf (United Arab Emirates), and results were compared to the Fenk quarry outcrop in Burgenland, Austria, a carbonate ramp of the Miocene (Badenian) Paratethys. Facies adjacencies (i.e. Moore neighbourhood of colour-coded image pixels of satellite image or outcrop map) were expressed by transition probability matrices which showed that horizontal (spatial) facies sequences and vertical (temporal) outcrop sequences had the Markov property (knowledge of t-th state defines likelihoods of t+1st state) and that equivalent facies were comparable in frequency. We expressed the transition probability matrices as weighted digraphs and calculated fixed probability vectors which encapsulate information on both the spatial and temporal components (size of and time spent in each facies). Models of temporal functioning were obtained by modifying matrices (digraphs) of spatial adjacency to matrices (digraphs) of temporal adjacency by using the same vertices (facies) but adjusting transitions without changing paths. With this combined spatio-temporal model, we investigated changes in facies composition in falling and rising sea-level scenarios by adjusting transition likelihoods preferentially into shallower (falling sea-level) or deeper (rising sea-level) facies. Our model can also be used as a numerical analogue to a Ginsburg-type autocyclic model. The fixed probability vector was used as a proxy for final facies distribution. Using Markov chains it is possible to use vertical outcrop data to evaluate the relative contribution of each facies in any time-slice which can aid, for example, in estimation of reservoir sizes and to gain insight into temporal functioning as derived from spatial pattern.




B-8552-2013; F-8807-2011

Peer Reviewed

Find in your library