Citations of:
Hypersequents and the proof theory of intuitionistic fuzzy logic
In Peter G. Clote & Helmut Schwichtenberg (eds.), Computer Science Logic. 14th International Workshop, CSL 2000. Berlin: Springer. pp. 187– 201 (2000)
Add citations
You must login to add citations.


Firstorder Gödel logics are a family of finite or infinitevalued logics where the sets of truth values V are closed subsets of [0,1] containing both 0 and 1. Different such sets V in general determine different Gödel logics GV (sets of those formulas which evaluate to 1 in every interpretation into V). It is shown that GV is axiomatizable iff V is finite, V is uncountable with 0 isolated in V, or every neighborhood of 0 in V is uncountable. Complete (...) 

All firstorder Gödel logics G_V with globalization operator based on truth value sets V C [0,1] where 0 and 1 lie in the perfect kernel of V are axiomatized by Ciabattoni’s hypersequent calculus HGIF. 

This paper is a sequel to the papers Baaz and Iemhoff [4] and [6] in which an alternative skolemization method called eskolemization was introduced that, when restricted to strong existential quantifiers, is sound and complete for constructive theories. In this paper we extend the method to universal quantifiers and show that for theories satisfying the witness property it is sound and complete for all formulas. We obtain a Herbrand theorem from this, and apply the method to the intuitionistic theory of (...) 