CEC Faculty Articles

Title

Cluster Detection with the PYRAMID Algorithm

Document Type

Article

Date

4-2007

Publication Title

Proceedings of the 2007 IEEE Symposium on Computational Intelligence and Data Mining

ISSN or ISBN

1-4244-0705-2

First Page

133

Last Page

138

Description

As databases continue to grow in size, efficient and effective clustering algorithms play a paramount role in data mining applications. Practical clustering faces several challenges including: identifying clusters of arbitrary shapes, sensitivity to the order of input, dynamic determination of the number of clusters, outlier handling, processing speed of massive data sets, handling higher dimensions, and dependence on usersupplied parameters. Many studies have addressed one or more of these challenges. PYRAMID, or parallel hybrid clustering using genetic programming and multiobjective fitness with density, is an algorithm that we introduced in a previous research, which addresses some of the above challenges. While leaving significant challenges for future work, such as handling higher dimensions, PYRAMID employs a combination of data parallelism, a form of genetic programming, and a multiobjective density-based fitness function in the context of clustering. This study adds to our previous research by exploring the detection capability of PYRAMID against a challenging dataset and evaluating its independence on user supplied parameters.

DOI

10.1109/CIDM.2007.368864

This document is currently not available here.

Find in your library

Share

COinS