CCE Theses and Dissertations

Date of Award


Document Type


Degree Name

Doctor of Philosophy in Computer Information Systems (DCIS)


Graduate School of Computer and Information Sciences


Maxine S. Cohen

Committee Member

Eric S. Ackerman

Committee Member

Gary C. Kessler


digital forensics, Human-Computer Interaction (HCI), visualization


Recent trends show digital devices utilized with increasing frequency in most crimes committed. Investigating crime involving these devices is labor-intensive for the practitioner applying digital forensics tools that present possible evidence with results displayed in tabular lists for manual review. This research investigates how enhanced digital forensics tool interface visualization techniques can be shown to improve the investigator's cognitive capacities to discover criminal evidence more efficiently. This paper presents visualization graphs and contrasts their properties with the outputs of The Sleuth Kit (TSK) digital forensic program. Exhibited is the textual-based interface proving the effectiveness of enhanced data presentation. Further demonstrated is the potential of the computer interface to present to the digital forensic practitioner an abstract, graphic view of an entire dataset of computer files. Enhanced interface design of digital forensic tools means more rapidly linking suspicious evidence to a perpetrator.

Introduced in this study is a mixed methodology of ethnography and cognitive load measures. Ethnographically defined tasks developed from the interviews of digital forensics subject matter experts (SME) shape the context for cognitive measures. Cognitive load testing of digital forensics first-responders utilizing both a textual-based and visualized-based application established a quantitative mean of the mental workload during operation of the applications under test. A t-test correlating the dependent samples' mean tested for the null hypothesis of less than a significant value between the applications' comparative workloads of the operators. Results of the study indicate a significant value, affirming the hypothesis that a visualized application would reduce the cognitive workload of the first-responder analyst. With the supported hypothesis, this work contributes to the body of knowledge by validating a method of measurement and by providing empirical evidence that the use of the visualized digital forensics interface will provide a more efficient performance by the analyst, saving labor costs and compressing time required for the discovery phase of a digital investigation.