CCE Theses and Dissertations

Campus Access Only

All rights reserved. This publication is intended for use solely by faculty, students, and staff of Nova Southeastern University. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, now known or later developed, including but not limited to photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the author or the publisher.

Date of Award


Document Type

Dissertation - NSU Access Only

Degree Name

Doctor of Philosophy in Computer Information Systems (DCIS)


Graduate School of Computer and Information Sciences


William Hafner

Committee Member

Sumitra Mukherjee

Committee Member

Paulo CG Costa


Semantic Web, Service Oriented Architectures, Uncertainty Reasoning


Accurate situational assessment is key to any decision maker and especially crucial in military command and control, air traffic control, and complex system decision making. Endsley described three dependent levels of situational awareness, (1) perception, (2) understanding, and (3) projection. This research was focused on Endsley's second-level situational awareness (understanding) as it applies to service-oriented information technology environments in the context of the Semantic Web. Specifically, this research addressed the problem of developing accurate situational assessments related to the status or health of information technology (IT) services, especially composite, dynamic IT services, when some of Endsley's first level (perceived) information was inaccurate or incomplete.

Research had not adequately addressed the problem of how to work with inaccuracy and situational awareness information in order to produce accurate situational assessments for Semantic Web services. This problem becomes especially important as the current Web moves towards a Semantic Web where information technology is expected to be represented and processed by machines. Costa's probabilistic Web ontology language (PR-OWL), as extended by Carvalho (PR-OWL2), is a framework for storage of and reasoning with uncertainty information as part of the Semantic Web.

This study used Costa's PR-OWL framework, as extended by Carvalho, to build an ontology that supports reasoning with service-oriented information in the context of the Semantic Web and then assessed the effectiveness of the developed ontology through the use of competency questions, as described by Gruninger and Fox and verified through the use of an automated reasoner. This research resulted in a Web Ontology Language for Services (OWL-S), PR-OWL2 based ontology, and its associated Multi-Entity Bayesian Network which are flexible and highly effective in calculating situational assessments through the propagation of posterior probabilities using Bayesian logic.

Specifically, this research (1) identifies sufficient information required for effective situational awareness reasoning, (2) specifies the predicates and semantics necessary to represent service components and dependencies, (3) applies Multi-Entity Bayesian Network to reason with situational awareness information, (4) ensures the correctness and consistency of the situational awareness ontology, and (5) accurately estimates posterior probabilities consistent with situational awareness information.

To access this thesis/dissertation you must have a valid OR email address and create an account for NSUWorks.

Free My Thesis

If you are the author of this work and would like to grant permission to make it openly accessible to all, please click the Free My Thesis button.

  Contact Author

  Link to NovaCat