Faculty Articles

Title

Receptive-field properties of V1 and V2 neurons in mice and macaque monkeys

ISBN or ISSN

0021-9967

Volume

518

Issue

11

Publication Date / Copyright Date

6-1-2010

First Page

2051

Last Page

2070

DOI Number

10.1002/cne.22321

Abstract

We report the results of extracellular single-unit recording experiments where we quantitatively analyzed the receptive-field (RF) properties of neurons in V1 and an adjacent extrastriate visual area (V2L) of anesthetized mice with emphasis on the RF center-surround organization. We compared the results with the RF center-surround organization of V1 and V2 neurons in macaque monkeys. If species differences in spatial scale are taken into consideration, mouse V1 and V2L neurons had remarkably fine stimulus selectivity, and the majority of response properties in V2L were not different from those in V1. The RF center-surround organization of mouse V1 neurons was qualitatively similar to that for macaque monkeys (i.e., the RF center is surrounded by extended suppressive regions). However, unlike in monkey V2, a significant proportion of cortical neurons, largely complex cells in V2L, did not exhibit quantifiable RF surround suppression. Simple cells had smaller RF centers than complex cells, and the prevalence and strength of surround suppression were greater in simple cells than in complex cells. These findings, particularly on the RF center-surround organization of visual cortical neurons, give new insights into the principles governing cortical circuits in the mouse visual cortex and should provide further impetus for the use of mice in studies on the genetic and molecular basis of RF development and synaptic plasticity

Disciplines

Optometry

Keywords

receptive field, center-surround organization, surround suppression, visual cortex, mouse, macaque monkey

Peer Reviewed

Find in your library

 
COinS