CCE Theses and Dissertations

Campus Access Only

All rights reserved. This publication is intended for use solely by faculty, students, and staff of Nova Southeastern University. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, now known or later developed, including but not limited to photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the author or the publisher.

Date of Award

2013

Document Type

Dissertation - NSU Access Only

Degree Name

Doctor of Philosophy in Information Systems (DISS)

Department

Graduate School of Computer and Information Sciences

Advisor

Sumitra Mukherjee

Committee Member

Michael J. Lazlo

Committee Member

Gregory E. Simco

Keywords

ant colony optimization, ant system, microaggregation, population-based ant system, statistical disclosure control

Abstract

Numerous organizations collect and distribute non-aggregate personal data for a variety of different purposes, including demographic and public health research. In these situations, the data distributor is responsible with the protection of the anonymity and personal information of individuals. Microaggregation is one of the most commonly used statistical disclosure control methods. In microaggregation, the set of original records is

first partitioned into several groups. The records in the same group are similar to each other. The minimum number of records in each group is k. Each record is replaced by the mean value of the group (centroid). The confidentiality of records is protected by ensuring that each group has at least a minimum of k records and each record is indistinguishable from at least k-1 other records in the microaggregated dataset. The goal

of this process is to keep the within-group homogeneity higher and the information loss lower, where information loss is the sum squared deviation between the actual records and the group centroids.

Several heuristics have been proposed for the NP-hard minimum information loss microaggregation problem. Among the most promising methods is the multivariate Hansen-Mukherjee (MHM) algorithm that uses a shortest path algorithm to identify the best partition consistent with a specified ordering of records. Developing improved heuristics for ordering multivariate points for microaggregation remains an open research

challenge.

This dissertation adapts a version of the population-based ant colony optimization algorithm (PACO) to order records within which MHM algorithm is used iteratively to improve the quality of grouping. Results of computational experiments using benchmark test problems indicate that P-ACO/MHM based microaggregation algorithm yields comparable or improved information loss than those obtained by extant methods.

To access this thesis/dissertation you must have a valid nova.edu OR mynsu.nova.edu email address and create an account for NSUWorks.

Free My Thesis

If you are the author of this work and would like to grant permission to make it openly accessible to all, please click the Free My Thesis button.

  Contact Author

  Link to NovaCat

Share

COinS