CCE Theses and Dissertations
Date of Award
2015
Document Type
Dissertation
Degree Name
Doctor of Philosophy in Computer Information Systems (DCIS)
Department
Graduate School of Computer and Information Sciences
Advisor
James D. Cannady
Committee Member
Rita Barrios
Committee Member
Glyn T. Gowing
Keywords
Information science, Computer science, botnet, classification, detection, exfiltration, immunology, malware, cyber crime, cyber criminals
Abstract
The threat of data theft posed by self-propagating, remotely controlled bot malware is increasing. Cyber criminals are motivated to steal sensitive data, such as user names, passwords, account numbers, and credit card numbers, because these items can be parlayed into cash. For anonymity and economy of scale, bot networks have become the cyber criminal’s weapon of choice. In 2010 a single botnet included over one million compromised host computers, and one of the largest botnets in 2011 was specifically designed to harvest financial data from its victims. Unfortunately, current intrusion detection methods are unable to effectively detect data extraction techniques employed by bot malware. The research described in this Dissertation Report addresses that problem. This work builds on a foundation of research regarding artificial immune systems (AIS) and botnet activity detection. This work is the first to isolate and assess features derived from human computer interaction in the detection of data theft by bot malware and is the first to report on a novel use of the HTTP protocol by a contemporary variant of the Zeus bot.
NSUWorks Citation
Theodore O. Cochran. 2015. Immunology Inspired Detection of Data Theft from Autonomous Network Activity. Doctoral dissertation. Nova Southeastern University. Retrieved from NSUWorks, Graduate School of Computer and Information Sciences. (42)
https://nsuworks.nova.edu/gscis_etd/42.