CCE Theses and Dissertations
Date of Award
2015
Document Type
Dissertation
Degree Name
Doctor of Philosophy in Computing Technology in Education (DCTE)
Department
College of Engineering and Computing
Advisor
Steven R. Terrell
Committee Member
Sumitra Mukherjee
Committee Member
Thomas McFarland
Keywords
analytical modeling, modeling, non-traditional students, on-line students, predicting at-risk students, retention, Educational technology, Computer science, Higher education
Abstract
Predictive statistical modeling shows promise in accurately predicting academic performance for students enrolled in online programs. This approach has proven effective in accurately identifying students who are at-risk enabling instructors to provide instructional intervention. While the potential benefits of statistical modeling is significant, implementations have proven to be complex, costly, and difficult to maintain. To address these issues, the purpose of this study is to develop a fully integrated, automated predictive modeling system (PMS) that is flexible, easy to use, and portable to identify students who are potentially at-risk for not succeeding in a course they are currently enrolled in. Dynamic and static variables from a student system (edX) will be analyzed to predict academic performance of an individual student or entire class. The PMS model framework will include development of an open-source Web application, application programming interface (API), and SQL reporting services (SSRS). The model is based on knowledge discovery database (KDD) approach utilizing inductive logic programming language (ILP) to analyze student data. This alternative approach for predicting academic performance has several unique advantages over current predictive modeling techniques in use and is a promising new direction in educational research.
NSUWorks Citation
Mary L. Fonti. 2015. A Predictive Modeling System: Early identification of students at-risk enrolled in online learning programs. Doctoral dissertation. Nova Southeastern University. Retrieved from NSUWorks, College of Engineering and Computing. (367)
https://nsuworks.nova.edu/gscis_etd/367.
Included in
Educational Methods Commons, Instructional Media Design Commons, Programming Languages and Compilers Commons, Scholarship of Teaching and Learning Commons, Statistical Models Commons