CCE Theses and Dissertations
Campus Access Only
All rights reserved. This publication is intended for use solely by faculty, students, and staff of Nova Southeastern University. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, now known or later developed, including but not limited to photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the author or the publisher.
Date of Award
2013
Document Type
Dissertation - NSU Access Only
Degree Name
Doctor of Philosophy in Computer Information Systems (DCIS)
Department
Graduate School of Computer and Information Sciences
Advisor
Wei Li
Committee Member
James D Cannady
Committee Member
Sumitra Mukherjee
Keywords
Buffer Overflows, Cost sensitive classification, Data Mining, Decision Trees, Naive Bayes, Random Forests
Abstract
Buffer Overflows are a common type of network intrusion attack that continue to plague the networked community. Unfortunately, this type of attack is not well detected with current data mining algorithms. This research investigated the use of Random Forests, an ensemble technique that creates multiple decision trees, and then votes for the best tree. The research Investigated Random Forests' effectiveness in detecting buffer overflows compared to other data mining methods such as CART and Naïve Bayes. Random Forests was used for variable reduction, cost sensitive classification was applied, and each method's detection performance compared and reported along with the receive operator characteristics. The experiment was able to show that Random Forests outperformed CART and Naïve Bayes in classification performance. Using a technique to obtain Buffer Overflow most important variables, Random Forests was also able to improve upon its Buffer Overflow classification performance.
NSUWorks Citation
Gregory Alan Julock. 2013. The Effectiveness of a Random Forests Model in Detecting Network-Based Buffer Overflow Attacks. Doctoral dissertation. Nova Southeastern University. Retrieved from NSUWorks, Graduate School of Computer and Information Sciences. (190)
https://nsuworks.nova.edu/gscis_etd/190.