Marine & Environmental Sciences Faculty Articles

Very High-Frequency Radar Mapping of Surface Currents

Document Type

Article

Publication Date

4-2002

Publication Title

IEEE Journal of Oceanic Engineering

Keywords

ADCP, Coastal ocean circulation, Current profiles, Surface currents, VHF radar, vortices

ISSN

0364-9059

Volume

27

Issue/No.

2

First Page

155

Last Page

169

Abstract

An ocean surface current radar (OSCR) in the very high frequency (VHF) mode was deployed in South Florida Ocean Measurement Center (SFOMC) during the summer of 1999. During this period, a 29-d continuous time series of vector surface currents was acquired starting on 9 July 1999 and ending 7 August 1999. Over a 20-min sample interval, the VHF radar mapped coastal ocean currents over a 7.5 km × 8 km domain with a horizontal resolution of 250 m at 700 grid points. A total of 2078 snapshots of the two-dimensional current vectors were acquired during this time series and of these samples, only 69 samples (3.3%) were missing from the time series. During this period, complex surface circulation patterns were observed that included coherent, submesoscale vortices with diameters of 2 to 3 km inshore of the Florida Current. Comparisons to subsurface measurements from moored and ship-board acoustic Doppler current profiles revealed regression slopes of close to unity with biases ranging from 4 to 8 cm s-1 between surface and subsurface measurements at 3 to 4 m beneath the surface. Correlation coefficients were 0.8 or above with phases of -10 to -20° suggestive of an anticyclonic veering of current with depth relative to the surface current. The radar-derived surface current field provided spatial context for an observational network using mooring-, ship- and autonomous underwater vehicle-sensor packages that were deployed at the SFOMC.

Comments

©2002 IEEE

Additional Comments

Ocean Modeling Program grant #: N00014-98-1-0818

ORCID ID

0000-0001-6519-1547

DOI

10.1109/JOE.2002.1002470

Peer Reviewed

Share

COinS