Title

Are Lionfish Set for a Mediterranean Invasion? Modelling Explains Why This is Unlikely to Occur

Document Type

Article

Publication Date

11-2014

Publication Title

Marine Pollution Bulletin

Keywords

Mediterranean Sea, Connectivity, Invasive species, Lionfish, Computer modeling, Cellular automaton

ISSN

0025-326X

Volume

88

Issue/No.

1-2

First Page

138

Last Page

147

Abstract

The Atlantic invasion of Indo-Pacific lionfish (Pterois volitans/P. miles) has been as swift as it has been disastrous. Lionfish are non-native to the Mediterranean, but an invasion is perhaps even more likely than for the Atlantic. First, as for the Atlantic, there are many major cities on the coast of the Mediterranean (where aquarium-keeping is a common practice and chances of accidental and deliberate releases are high), and second, lionfish are native to the Red Sea, to which the Mediterranean is connected via the Suez Canal. Furthermore, there have already been four records of lionfish in the Mediterranean and so the pretext for an invasion is already in place. Up until now, however, it has been difficult to gauge the likelihood of an infestation of lionfish in the Mediterranean as, unlike the Atlantic, this sea has not been examined in terms of its hydrodynamics, ocean climate, and bathymetry, all factors known to be relevant to assessing the possibility of invasion. Motivated by this knowledge-gap, this study used remote sensing and computer modeling to investigate the connectivity between areas along the Mediterranean coastline that fulfill the necessary physical criteria to serve as potential lionfish habitat. Model results from the Mediterranean were compared and contrasted to those from the Atlantic and eastern Pacific. The Atlantic was considered because the lionfish invasion there has been voracious. Meanwhile, the eastern Pacific is interesting as a site without native lionfish, but with plenty of opportunity for their introduction, but no invasion yet recorded. Results indicated that, unlike in the Atlantic, connectivity among potential lionfish habitats in the Mediterranean was low in the study and comparable to that in the eastern Pacific. Although oceanographic conditions in the Mediterranean were found unfavorable for wide dispersion of lionfish larvae, hotspots where numerous lionfish sightings would forewarn an impending invasion were identified. This paper can therefore serve as a guide to the most efficient monitoring of lionfish in the Mediterranean and to where removal efforts should be concentrated, should the species become established.

Comments

©2014 Elsevier Ltd.

ResearcherID

B-8552-2013

DOI

10.1016/j.marpolbul.2014.09.013

This document is currently not available here.

Peer Reviewed

Find in your library

Share

COinS