CCE Theses and Dissertations

Campus Access Only

All rights reserved. This publication is intended for use solely by faculty, students, and staff of Nova Southeastern University. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, now known or later developed, including but not limited to photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the author or the publisher.

Date of Award


Document Type

Dissertation - NSU Access Only

Degree Name

Doctor of Philosophy in Computer Information Systems (DCIS)


Graduate School of Computer and Information Sciences


Wei Li

Committee Member

James D Cannady

Committee Member

Sumitra Mukherjee


Buffer Overflows are a common type of network intrusion attack that continue to plague the networked community. Unfortunately, this type of attack is not well detected with current data mining algorithms. This research investigated the use of Random Forests, an ensemble technique that creates multiple decision trees, and then votes for the best tree. The research Investigated Random Forests' effectiveness in detecting buffer overflows compared to other data mining methods such as CART and Naïve Bayes. Random Forests was used for variable reduction, cost sensitive classification was applied, and each method's detection performance compared and reported along with the receive operator characteristics. The experiment was able to show that Random Forests outperformed CART and Naïve Bayes in classification performance. Using a technique to obtain Buffer Overflow most important variables, Random Forests was also able to improve upon its Buffer Overflow classification performance.

To access this thesis/dissertation you must have a valid OR email address and create an account for NSUWorks.

Free My Thesis

If you are the author of this work and would like to grant permission to make it openly accessible to all, please click the Free My Thesis button.

  Contact Author