Department of Computer Science--Master of Science Computer Science 1984-1985

Nova Southeastern University

Follow this and additional works at: https://nsuworks.nova.edu/cec_coursecatalogs

Part of the Computer Engineering Commons

NSUWorks Citation
https://nsuworks.nova.edu/cec_coursecatalogs/154
DEPARTMENT OF COMPUTER SCIENCE
MASTER OF SCIENCE
COMPUTER SCIENCE

1984-1985
NOVA UNIVERSITY
3301 College Avenue
Fort Lauderdale, Florida 33314
WHY THE M.S. IN COMPUTER SCIENCE PROGRAM IS RIGHT FOR YOU

* Fully accredited programs

* Part-time and full-time degree programs

* Designed to meet the needs of South Florida industry

* Evening classes

* A graduate degree program for those who need a technical degree

* Solid academic foundation with a practitioner's approach to technology

* Faculty: practicing Engineers, Scientists, and Computer Scientists

Nova University is accredited by the Southern Association of Colleges and Schools.
MASTER OF SCIENCE, MAJOR IN

COMPUTER SCIENCE

The Department of Computer Science offers a graduate program leading to the degree of Master of Science with a major in Computer Science. This program is designed to give the student a thorough knowledge of computer systems through course work, basic and applied research activities, and specialized projects. Current areas of specialization include:

- Artificial Intelligence
- Compiler Construction
- Computer Systems Performance
- Data Base Design
- Data Communications
- Modeling and Simulation
- Network Design
- Numerical Analysis
- Operating Systems Design
- Software Engineering
- Structured Programming

FORMAT: The Master of Science in Computer Science Program operates on a 12 week term. Each three (3) semester credit course meets for four (4) hours per week for 12 weeks. All courses in the program are scheduled in the evenings or on Saturday.
ADMISSION REQUIREMENTS

The Computer Science Graduate Program has been designed for students with undergraduate training in computer science, engineering, mathematics or physics. Applicants for the Master of Science degree in Computer Science should have an undergraduate major in one of the above areas or a related area and must meet the following requirements:

(1) A baccalaurate degree, granted by an accredited institution representing completion of a course of study which fulfills prerequisites for graduate work in the area of Computer Science.

(2) A 2.5 undergraduate grade point average on a grading scale of 4.0 (A).

(3) The intellectual capacity and motivation to pursue graduate work as determined by credentials and an interview. The interview can be waived if the applicant does not reside in the state of Florida. The applicant's official transcript must be submitted directly from the degree-granting institution.

(4) Satisfaction of undergraduate prerequisites in:
 (a) Data Structures
 (b) Experience with higher level programming languages such as FORTRAN, PASCAL, C or PL/I and with assembly language programming.
 (c) Computer architecture
 (d) Mathematics—including calculus, linear algebra and some discrete mathematics.

Students not satisfying these prerequisites will be required to make up the appropriate deficiencies in the undergraduate program before being admitted with full graduate status.

TRANSFER CREDIT. Up to 6 graduate credits may be transferred from a regionally accredited institution. The courses selected for transfer must have received a B or better grade and must match a course in the required program. The transfer will be evaluated upon the receipt of an official transcript from the institution originally giving the credit.
MASTER OF SCIENCE DEGREE REQUIREMENTS

Two options leading to the Master of Science degree with a major in Computer Science are offered. The requirements for both the thesis and the non-thesis option are:

(1) The completion of 36 semester hours of graduate credit of which 24 semester hours are required courses and must include the following courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIS 610</td>
<td>Theory and Principles of Programming</td>
<td>3 cr.</td>
</tr>
<tr>
<td>CIS 620</td>
<td>Modeling and Simulation</td>
<td>3 cr.</td>
</tr>
<tr>
<td>CIS 630</td>
<td>Compiler Design Theory</td>
<td>3 cr.</td>
</tr>
<tr>
<td>CIS 640</td>
<td>Operating Systems Theory and Design</td>
<td>3 cr.</td>
</tr>
<tr>
<td>CIS 650</td>
<td>Network Design and Analysis</td>
<td>3 cr.</td>
</tr>
<tr>
<td>CIS 660</td>
<td>Data Base Management</td>
<td>3 cr.</td>
</tr>
<tr>
<td>CIS 670</td>
<td>Artificial Intelligence/Expert Systems</td>
<td>3 cr.</td>
</tr>
<tr>
<td>CIS 680</td>
<td>Software Engineering</td>
<td>3 cr.</td>
</tr>
</tbody>
</table>

(2) The student must maintain a grade average of 3.0 (B) or better in all graduate level courses.

The additional requirements for the thesis option are the completion of six semester hours of approved elective courses in Computer Science, and six semester hours for a written thesis.

The non-thesis option has the additional requirement of the completion of 12 semester hours of approved elective courses in Computer Science.

ELECTIVES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIS 600</td>
<td>Computer Systems</td>
<td>3 cr.</td>
</tr>
<tr>
<td>CIS 601</td>
<td>Programming Languages</td>
<td>3 cr.</td>
</tr>
<tr>
<td>CIS 611</td>
<td>Systems Programming and Project Implementation</td>
<td>3 cr.</td>
</tr>
<tr>
<td>CIS 612</td>
<td>Concurrent Programming Languages</td>
<td>3 cr.</td>
</tr>
<tr>
<td>CIS 621</td>
<td>Mathematical Programming</td>
<td>3 cr.</td>
</tr>
<tr>
<td>CIS 622</td>
<td>Numerical Analysis</td>
<td>3 cr.</td>
</tr>
<tr>
<td>CIS 631</td>
<td>Language Theory and Automata</td>
<td>3 cr.</td>
</tr>
<tr>
<td>CIS 632</td>
<td>Compiler Implementation</td>
<td>3 cr.</td>
</tr>
<tr>
<td>CIS 633</td>
<td>Graph Theory</td>
<td>3 cr.</td>
</tr>
<tr>
<td>CIS 634</td>
<td>Complexity Theory</td>
<td>3 cr.</td>
</tr>
<tr>
<td>CIS 641</td>
<td>Digital Computer Design</td>
<td>3 cr.</td>
</tr>
<tr>
<td>CIS 642</td>
<td>Integrated Computer Systems</td>
<td>3 cr.</td>
</tr>
<tr>
<td>CIS 643</td>
<td>Array Processors and Supercomputers</td>
<td>3 cr.</td>
</tr>
<tr>
<td>CIS 644</td>
<td>Operating Systems Implementation</td>
<td>3 cr.</td>
</tr>
<tr>
<td>CIS 645</td>
<td>Microprogramming and Microprocessors</td>
<td>3 cr.</td>
</tr>
<tr>
<td>CIS 651</td>
<td>Data Communications</td>
<td>3 cr.</td>
</tr>
<tr>
<td>CIS 652</td>
<td>Systems Performance Evaluation</td>
<td>3 cr.</td>
</tr>
<tr>
<td>CIS 661</td>
<td>Data Base Practicum</td>
<td>3 cr.</td>
</tr>
<tr>
<td>CIS 662</td>
<td>Distributed Data Base</td>
<td>3 cr.</td>
</tr>
<tr>
<td>CIS 671</td>
<td>Robotics and Automated Processing</td>
<td>3 cr.</td>
</tr>
<tr>
<td>CIS 681</td>
<td>Interactive Computer Graphics</td>
<td>3 cr.</td>
</tr>
<tr>
<td>CIS 682</td>
<td>Software Engineering Implementation</td>
<td>3 cr.</td>
</tr>
<tr>
<td>CIS 690</td>
<td>Special Topics</td>
<td>3 cr.</td>
</tr>
</tbody>
</table>
TUITION AND FEES

Tuition (per credit) $150
Application fee, nonrefundable $20
Registration fee, nonrefundable $15

REGISTRATION CLOSES ONE WEEK BEFORE THE BEGINNING OF THE TERM.

NEW TERM BEGINS:

September 24, 1984
January 7, 1985
April 8, 1985
July 15, 1985

FOR INFORMATION CALL:
(305) 475-7563
or
(305) 475-7484

OR WRITE:
Nova University
Department of Computer Science, Master's Program
3301 College Avenue
Fort Lauderdale, Florida 33314
COURSE DESCRIPTIONS

CIS 600 COMPUTER SYSTEMS
Introduction to digital computer design, peripheral devices, storage allocation, operating systems, compilers and assemblers. An understanding of the total operating environment will be developed. Investigation of the common programming techniques and their theory. Segmentation and overlays, recursion, dynamic storage processing, (stacks, queues, trees), macros.
PREREQUISITE: CONSENT OF INSTRUCTOR. May be required of students whose undergraduate major was not computer science.

CIS 601 PROGRAMMING LANGUAGES
Introduction to data structures and data types, and understanding of the modern approach to structured programming will be developed. A comparative study of several high-level programming languages. Emphasis will be placed on how concepts are expressed in each of the major languages, such as FORTRAN, COBOL, PL/1, PASCAL, and ALGOL.
PREREQUISITE: CONSENT OF INSTRUCTOR. May be required of students whose undergraduate major was not computer science.

CIS 610 THEORY AND PRINCIPLES OF PROGRAMMING
The mathematics of algorithm and programming construction. The art of structured programming. The dynamic environment of a program and its record of execution. The theory of concurrent programming.
PREREQUISITES: CIS 600, CIS 601.

CIS 611 SYSTEMS PROGRAMMING AND PROJECT IMPLEMENTATION
Participation in the implementation of an industrial, business or University project requiring the knowledge of system's programming.
PREREQUISITES: CIS 600, CIS 601.

CIS 612 CONCURRENT PROGRAMMING LANGUAGES (ADA, MODULA AND SIMULA-67)
An introduction to concurrent programming languages. Modules and class structures, packages and concurrent tasks in ADA. Generic procedures. Concurrent programming, mailbox tasks, signals and semaphores. Abstract data types, operations on abstract objects, hiding of the representation of objects of a given type, private data types.
PREREQUISITES: CIS 600, CIS 601.

CIS 620 MODELING AND SIMULATION
Introduction to modeling techniques. Discrete events systems. Development of models (e.g. mathematical) of physical processes. Use of simulation programs such as SIMULA, GPSS, and SIMSCRIPT.
PREREQUISITE: CONSENT OF INSTRUCTOR.

CIS 621 MATHEMATICAL PROGRAMMING
PREREQUISITE: CONSENT OF INSTRUCTOR.
CIS 622 NUMERICAL ANALYSIS
Introduction to error analysis, iterative methods, eigenvalue problems; integration and differentiation by computer, interpolation, ill-conditioned problems.
PREREQUISITES: CIS 600, CIS 601.

CIS 630 COMPILER DESIGN THEORY
Language theory will be applied to the design of a compiler for a high-level language. Parsing, syntax analysis, interpretation phase and code generation. Other areas of the compilation process will be covered, such as storage allocation, symbol table management, searching and sorting, and recursion.
PREREQUISITES: CIS 600, CIS 601.

CIS 631 LANGUAGE THEORY AND AUTOMATA
Introduction to formal grammars, Backus-Naur notation. The formal theory behind the design of a computer language is studied. The corresponding types of automata which may serve as recognizers and generators for a language will be described.
PREREQUISITES: CIS 600, CIS 601.

CIS 632 COMPILER IMPLEMENTATION
Design, implementation, and testing of a compiler for a high-level language.
PREREQUISITE: CIS 630.

CIS 633 GRAPH THEORY
Finite linear graphs. Applications to modeling optimization, networks, operating systems design, digital design.
PREREQUISITES: CIS 600, CIS 601.

CIS 634 COMPLEXITY THEORY
PREREQUISITE: CIS 633.

CIS 640 OPERATING SYSTEMS THEORY AND DESIGN
Analysis of computer operating systems with emphasis on structured design. Multi-programming and multiprocessing, real-time, time-sharing, networks, job control. Scheduling, synchronization and other forms of resource management: I/O programming memory and file system management.
PREREQUISITES: ICS 600, ICS 601.

CIS 641 DIGITAL COMPUTER DESIGN
Principles and techniques of digital computer design. Integrated circuits, logic design, LSI and MSI design, sequential circuit analysis. Processor logic design, arithmetic unit, memory systems, input-output structures, microprogramming.
PREREQUISITES: CIS 600, CIS 601.
CIS 642 INTEGRATED COMPUTER SYSTEMS (VLSI)
PREREQUISITE: CONSENT OF INSTRUCTOR.

CIS 643 ARRAY PROCESSORS AND SUPERCOMPUTERS
PREREQUISITES: CIS 600, CIS 601.

CIS 644 OPERATING SYSTEMS IMPLEMENTATION
Implementation and testing of operating system design on actual hardware.
PREREQUISITE: CIS 640.

CIS 645 MICROPROGRAMMING AND MICROPROCESSORS
The past, present and future of microprogramming will be discussed in detail with particular attention given to processor technology. An in-depth survey of commercially available microprogrammable microprocessors will be presented as well as monolithic microprogrammed devices. The students will implement a processor instruction set in both vertical and horizontal microcode utilizing a Simulator, Micro-assembler, and Register Transfer language. Advanced topics in special-purpose processor design and architecture re-definition (dynamic) will be presented.
PREREQUISITE: CONSENT OF INSTRUCTOR.

CIS 650 NETWORK DESIGN AND ANALYSIS
Distributed processing and other forms of network systems.
PREREQUISITES: CIS 600, CIS 601.

CIS 651 DATA COMMUNICATIONS
An introduction to basic data communication concepts, coding modes and types of transmissions, multiplexing, line protocols, switching techniques and communication satellite technology.
PREREQUISITE: CIS 650.

CIS 652 SYSTEMS PERFORMANCE EVALUATION
An analysis of the computer resources in a monitoring environment. CPU, I/O channel, memory and mix utilization statistics. Hardware monitors and software monitors. Determining the overloaded computer system. Capacity analysis.
PREREQUISITES: CIS 600, CIS 601.

CIS 660 DATA BASE MANAGEMENT
Computer-oriented techniques for information storage and retrieval with emphasis on on-line capability. File structures, including data definition and manipulation languages.
PREREQUISITES: CIS 600, CIS 601.
CIS 661 DATA BASE PRACTICUM
The techniques of Data Base Management will be applied to practical projects.
PREREQUISITE: CIS 660.

CIS 662 DISTRIBUTED DATA BASE
The study of information storage and retrieval in a distributed environment. Distributed processing networks.
PREREQUISITE: CONSENT OF INSTRUCTOR.

CIS 670 ARTIFICIAL INTELLIGENCE/EXPERT SYSTEMS
This course emphasizes the area of programming involved with non-deterministic solutions to problems. Concepts of LISP, PROLOG, OPS5 and other specialized programming languages will be presented. The notion of knowledge bases will be developed and all students will be expected to produce a working expert system which embodies these concepts.
PREREQUISITES: CIS 600, CIS 601.

CIS 671 ROBOTICS AND AUTOMATED PROCESSING
The principles and concepts of modern robots and automation are developed. The concepts of algorithmic and non-algorithmic control are presented along with the details of sensor and device I/O. Experiments with simulated and real robots will be performed to reinforce the basic concepts presented.
PREREQUISITE: CIS 670.

CIS 680 SOFTWARE ENGINEERING
This course offers a thorough analysis of the problems related to the design, development and implementation of software projects. First, the fundamentals of software project management are presented, followed by a discussion of the techniques of software development. A comprehensive, modern approach to structured programming, program modularization and program correctness is offered. Software verification and validation, software security and software protection will also be analyzed in detail.
PREREQUISITE: CONSENT OF INSTRUCTOR.

CIS 681 INTERACTIVE COMPUTER GRAPHICS
The principles of interactive computer graphics are presented. Emphasis will be placed on mastering the concepts of two-dimensional graphics including the basic transformations (scale, translate, rotate), perspective, hidden-line removal and hardware support devices. The two-dimensional concepts will be extended to include three-dimensional computer graphics including smoothing algorithms, animation and a variety of related topics.
PREREQUISITES: CIS 600, CIS 601.

CIS 682 SOFTWARE ENGINEERING IMPLEMENTATION
The techniques of software engineering will be applied to practical projects.
PREREQUISITE: CIS 680.

CIS 690 SPECIAL TOPICS
This seminar will focus on the professor's current research interests.
PREREQUISITE: CONSENT OF INSTRUCTOR.