1982

Master of Science Computer Science Courses Offered Winter Session 1982

Nova Southeastern University

Follow this and additional works at: https://nsuworks.nova.edu/cec_coursecatalogs

Part of the Computer Engineering Commons

NSUWorks Citation
Nova Southeastern University, "Master of Science Computer Science Courses Offered Winter Session 1982" (1982). College of Engineering and Computing Course Catalogs. 155.
https://nsuworks.nova.edu/cec_coursecatalogs/155

This Program Overview is brought to you for free and open access by the NSU Course Catalogs and Course Descriptions at NSUWorks. It has been accepted for inclusion in College of Engineering and Computing Course Catalogs by an authorized administrator of NSUWorks. For more information, please contact nsuworks@nova.edu.
Courses Offered: Winter Session 1982

<table>
<thead>
<tr>
<th>COURSE NUMBER</th>
<th>COURSE TITLE</th>
<th>CREDIT</th>
<th>DAY</th>
<th>TIME</th>
<th>ROOM</th>
<th>PROFESSOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICS 610</td>
<td>Computer Systems</td>
<td>3</td>
<td>Monday</td>
<td>6-10</td>
<td>M 212</td>
<td>K. Wilberg</td>
</tr>
<tr>
<td>ICS 630</td>
<td>Programming Languages</td>
<td>3</td>
<td>Wednesday</td>
<td>6-10</td>
<td>M 311</td>
<td>M. Ghanouni</td>
</tr>
<tr>
<td>ICS 634</td>
<td>Compiler Design Theory</td>
<td>3</td>
<td>Wednesday</td>
<td>6-10</td>
<td>M 212</td>
<td>M. Reynolds</td>
</tr>
<tr>
<td>ICS 645</td>
<td>Integrated Computer Systems (VLSI)</td>
<td>3</td>
<td>Tuesday</td>
<td>6-10</td>
<td>M 212</td>
<td>J. Levin</td>
</tr>
<tr>
<td>ICS 680</td>
<td>Microprogramming and Microprocessing</td>
<td>3</td>
<td>Thursday</td>
<td>6-10</td>
<td>M 311</td>
<td>P. Adams</td>
</tr>
<tr>
<td>ICS 690</td>
<td>Software Engineering</td>
<td>3</td>
<td>Monday</td>
<td>6-10</td>
<td>M 311</td>
<td>J. Levin</td>
</tr>
</tbody>
</table>

COURSE DESCRIPTIONS

ICS 610 COMPUTER SYSTEMS
Introduction of digital computer design, peripheral devices, storage allocation, operating systems, compilers and assemblers. An understanding of the total operating environment will be developed. Investigation of the common programming techniques and their theory. Segmentation and overlays, recursion, dynamic storage processing, (stacks, queues, trees), macros.

ICS 630 PROGRAMMING LANGUAGES
Introduction to data structures and data types, and understanding of the modern approach to structured programming will be developed. A comparative study of several high-level programming languages. Emphasis will be placed on how concepts are expressed in each of the major languages, such as FORTRAN, COBOL, PL/1, PASCAL, and ALGOL.

ICS 634 COMPILER DESIGN THEORY
Language theory will be applied to the design of a compiler for a high-level language. Parsing, syntax analysis, interpretation phase and code generation. Other areas of the compilation process will be covered, such as storage allocation, symbol table management, searching and sorting, and recursion.
PREREQUISITES: ICS 610, ICS 630

ICS 645 INTEGRATED COMPUTER SYSTEMS (VLSI)
PREREQUISITE: CONSENT OF INSTRUCTOR.

ICS 680 MICROPROGRAMMING AND MICROPROCESSORS
The past, present and future of Microprogramming will be discussed in detail with particular attention given to Processor Technology. An in-depth survey of commercially available microprogrammable microprocessors will be presented as well as monolithic microprogrammed devices. The students will implement a processor instruction set in both vertical and horizontal microcode utilizing a Simulator, Micro-assembler, and Register Transfer language. Advanced topics in special-purpose processor design and architecture redefinition (dynamic) will be presented.
PREREQUISITE: CONSENT OF INSTRUCTOR.

ICS 690 SOFTWARE ENGINEERING
This course offers a thorough analysis of the problems related to the design, development and implementation of Software Projects. First, the fundamentals of Software project management are presented, followed by a discussion of the techniques of Software development. A comprehensive, modern approach to structured programming, program modularization and program correctness is offered. Software Verification and Validation, Software security and Software protection will also be analyzed in detail. PREREQUISITE: CONSENT OF INSTRUCTOR.
The following is the schedule of fees and the university policy on tuition payment and refund.

<table>
<thead>
<tr>
<th>Fee Type</th>
<th>Fee Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuition fees at the rate of $100 per credit hour</td>
<td>$15</td>
</tr>
<tr>
<td>Application fee, nonrefundable</td>
<td>$15</td>
</tr>
<tr>
<td>Registration fee, nonrefundable</td>
<td>$15 per term</td>
</tr>
<tr>
<td>Laboratory fee, where applicable</td>
<td>$30</td>
</tr>
<tr>
<td>Graduation fee</td>
<td>$15</td>
</tr>
<tr>
<td>Late Registration Fee (after Dec. 18)</td>
<td>$15</td>
</tr>
</tbody>
</table>

Students cannot re-register for additional courses if there is an outstanding balance against previous tuition for which no previous arrangement has been made with the Comptroller.

Returning students must call 475-7650 for registration approval. Registration forms may be mailed in only after approval by phone.

Tuition Refund Policy
The following refund policy will be computed based upon the date written notification of the drop is received by the Registrar’s Office.

- 100% refund prior to the first class meeting.
- 75% refund prior to the second class meeting, regardless of class attendance.
- 50% refund prior to the third class meeting, regardless of class attendance.
- Fees are non-refundable

Fri. Jan. 29 LAST DAY TO DROP COURSES.

Nova University is fully accredited by the Southern Association of Colleges and Schools and practices a policy of nondiscrimination in employment and in all its programs.

Nova University admits students of any race, color, and national or ethnic origin.