MATHEMATICAL OPTIMIZATION

TEODORA SUCIU

NOVEMBER 28, 2016

MATHEMATICS COLLOQUIUM SERIES
BACKGROUND INFORMATION

• **Mathematical Optimization** - the selection of the best component from a set of available options

• **Optimization Problems** consist of finding the maximum or minimum of a real function, known as an optimal solution

• **Often involves a constraint**

• **Most widely used in the areas of Mathematics, Computer Science, and Operations Research**
MATHEMATICAL APPLICATIONS

• Calculus of variations seeks to optimize an action integral over some space to an extremum by varying a function of the coordinates.

• Global optimization - the development of deterministic algorithms that are capable of guaranteeing convergence in finite time to the actual optimal solution of a nonconvex problem.

• Mathematical approaches to solving optimization problems include classical, linear & nonlinear programming, and game theory.
BUSINESS APPLICATIONS

- Optimal allocation of resources lies at the heart of the science of economics.
- Consumers are assumed to maximize their utility, while firms are usually assumed to maximize their profit.
- Asset prices, trade theory, and the optimization of market portfolios are also modeled using optimization theory.
- Macroeconomists build dynamic stochastic general equilibrium (DSGE) models that describe the dynamics of the whole economy.
The relationship between the optimal indifference curve $U(x, y) = C$, where $C = U(18, 8)$ and the budgetary constraint is $20x + 30y = 600$

The relationship between the budgetary constraint and the level curve for optimal sales
REAL WORLD EXAMPLE: DISNEY WORLD
• Crowd Calendar shows how busy each Disney theme park is
• Attendance across different weeks, months and seasons
• Customers can plan a park visit and avoid crowds with the help of:
 • Each park’s opening and closing times
 • The park’s Extra Magic Hours schedule
 • Any special events that might affect your visit
• Shows yesterday’s results - their predictions versus what actually happened
SUMMER 2016 AT DISNEY

- Graph data based on standby waits, posted waits, and people in line between 10 a.m. and 5 p.m. (the peak time for crowds).
- Most major attractions at the Animal Kingdom has had a wait time drop in 2016.
- Attendance is lower for Epcot, Disney’s Hollywood Studios, and the Animal Kingdom, but higher at the Magic Kingdom, versus the same period in 2015.
- Overall, attendance is slightly lower throughout Walt Disney World.
MAIN ALGORITHM

- **Traveling Salesman Problem (TSP)**
 - Optimal route
 - Better solution = cheaper solution
- **Time Dependent Traveling Salesman Problem (TDTSP)**

 The cost to travel from one city to another depends on:
 - The distance between cities
 - Time of day of the travel
ALGORITHM: AVOIDING LONG LINES

- \(Q = \) COMPUTER TIME TO COME UP WITH A RESULT
- \(R = \) THE SET OF ALL RIDES YOU WANT TO RIDE
 - \(r = \) SPECIFIC RIDE IN \(R \)
- \(E_{ij}^t = \) WALK FROM RIDE \(i \) TO \(j \) AT TIME \(t \)
- \(\text{Start at the entrance and run a time-dependent Nearest Neighbor algorithm for each ride in } R \)
 - \(\text{each } r_i \text{ in } R \text{ is the ride visited after entering the park} \)
- \(\text{Save the set of all edges found in the paths into } S \)
- \(\text{Create a small number – random TSP paths for your rides – just put your rides in } R \text{ in any random order to start with. For each path in } P \text{, calculate the “cost” of the path} \)
ALGORITHM CONTINUED

• **While (we still have time according to Q)**

• **Pick 2 paths (parents) from P using tournament selection**

• **Pick a genetic operator such as:**

 • **Random Mutation**

 • **Time-Dependent Random Mutation**

 • **Lin-Kernighan**

 • **2-opt**

 • **Cycle Crossover**

 • **Brute Force Permutation**

 • **Fast Pass Mutation**

• **Apply the chosen operator to the parents. The path that is created by this operator and the parents is called the child**

• **Calculate the cost of the child**

• **If the child’s cost is less than the cost of the worst path in P:**

 • **Delete the worst path in P**

 • **Add child to P**

• **If we’ve gone a really long time without adding a child to P:**

 • **Delete all but the 1 best path in P**

 • **Create new, random paths for all of the remaining space in P**

• **Done // While (we still have time..)**

• **Send the results back to the server**
HOW MANY POSSIBILITIES ARE THERE?

- **Magic Kingdom** has 43 attractions, ranking between the game of **Chess** and **Go** in terms of complexity.

- Takes into considerations food places and shows.

- Variations for different times of the day or year.

- Takes a lot of computing power.

- There are 10^{170} possible moves in the game *Go*, while only 10^{80} number of atoms in the observable universe.

<table>
<thead>
<tr>
<th>Game</th>
<th>Ways to Play</th>
<th>Like a Touring Plan with</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tic-Tac-Toe</td>
<td>$31,896$</td>
<td>8 attractions</td>
</tr>
<tr>
<td>Connect 4</td>
<td>4.6×10^{12}</td>
<td>$15-18$ attractions</td>
</tr>
<tr>
<td>Checkers</td>
<td>5×10^{20}</td>
<td>$21-22$ attractions</td>
</tr>
<tr>
<td>Chess</td>
<td>10^{40} to 10^{50}</td>
<td>$35-42$ attractions</td>
</tr>
<tr>
<td>Go</td>
<td>10^{170}</td>
<td>108 attractions</td>
</tr>
</tbody>
</table>
CALCULUS OF VARIATIONS

• The feasible points that satisfy the constraint form a polygon
• The edges of a polygon – edges of the park area
• Each ride is similar to a vertex on a polygon
• The extrema occur at the vertices
• Many similar problems involve linear programming
REFERENCES

CONSTRANDED OPTIMIZATION. (n.d.). RETRIEVED OCTOBER 25, 2016, FROM

HTTP://WWW.MHHE.COM/MATH/FINMATH/HOFFMANN/HOFFMANN07CALC_S/GRAphICS/HOFFMAN01CA

LC_S/CH07/OThERS/CH07SEC04.PDF

TESTA, L. (2016, MARCH 21). TRIP PLANNING ROBOT OVERLORDS. RETRIEVED OCTOBER 25, 2016,

FROM HTTP://BLOG.TOURINGPLANS.COM/2016/03/21/OUR-TRIP-PLANNING-ROBOT-OVERLORDS/

UMMER, E. K. (2012). BASIC MATHEMATICS FOR ECONOMICS, BUSINESS, AND FINANCE. NEW YORK, NY:

ROUTLEDGE.

HTTPS://WWW.BRITANNICA.COM/TOPIC/OPTIMIZATION