Geometric Flows

Mingliang Cai

April 12, 2016

Nova Southeastern University
Curvature of a Plane Curve

Let $C : S^1 \to \mathbb{R}^2$ be a smooth closed curve
Let \(C : S^1 \rightarrow \mathbb{R}^2 \) be a smooth closed curve.

\[
T(s) = \frac{dC}{ds}
\]
Curvature of a Plane Curve

Let $C : S^1 \to \mathbb{R}^2$ be a smooth closed curve

s: arclength

$$T(s) = \frac{dC}{ds}$$

$$\frac{dT}{ds} \perp T(s)$$

$$\frac{dT}{ds} = k(s)N(s)$$

$k(s)$: Curvature at $C(s)$
Curvature of a Plane Curve

\[C(s) = (r \cos \frac{s}{r}, r \sin \frac{s}{r}) \]

\[T(s) = (-\sin \frac{s}{r}, \cos \frac{s}{r}) \quad N(s) = (-\cos \frac{s}{r}, -\sin \frac{s}{r}) \]

\[\frac{dT}{ds}(s) = \frac{1}{r}(-\cos \frac{s}{r}, -r \sin \frac{s}{r}) \]

\[= \frac{1}{r}N(s) \]

\[k = \frac{1}{r} \]
Curvature of a Plane Curve

\[N(s) \]

\[\frac{dT}{ds} \]
Curvature of a Plane Curve

\[k < 0 \]

\[N(s) \]

\[\frac{dT}{ds} \]
Curvature of a Plane Curve

\[k < 0 \]

\[\frac{dT}{ds} \]

\[N(s) \]

\[k > 0 \]
Curve Shortening Flow
Curve Shortening Flow
Curve Shortening Flow

$S^1 \rightarrow \text{Complex Curve}$
Curve Shortening Flow

\[S^1 \times [0, T) \quad \xrightarrow{C(s,t)} \quad C(s,0) = C(s) \]
Curve Shortening Flow

$S^1 \times [0, T)$

$C(s,t)$

$\frac{\partial C}{\partial t}(s, t) = k(s, t)N(s, t)$
Curve Shortening Flow

\[\frac{\partial C}{\partial t}(s, t) = k(s, t)N(s, t) \]
Curve Shortening Flow

\[C(s) : \quad S^1 \longrightarrow \mathbb{R}^2 \]

Curve shortening flow

\[C(s,t) : \quad S^1 \times [0, T) \longrightarrow \mathbb{R}^2 \]

\[\frac{\partial C}{\partial t} = kN, \quad C(s,0) = C(s) \]
Curve Shortening Flow

\[
\frac{\partial C}{\partial t} = kN
\]

\(k < 0\)

\(k > 0\)
Curve Shortening Flow

\[C(s) = (\cos s, \sin s) : S^1 \rightarrow \mathbb{R}^2 \]

\[C(s, t) = \sqrt{1 - 2t} (\cos s, \sin s) \]

Curvature of \(C(\cdot, t) \) at \(s \): \(k(s, t) = \frac{1}{\sqrt{1-2t}} \)

Inward normal vector of \(C(\cdot, t) \) at \(s \): \(N(s, t) = -(\cos s, \sin s) \)

\[\frac{\partial C}{\partial t} = kN \]
Curve Shortening Flow

\[C(s) = (\cos s, \sin s) : S^1 \rightarrow \mathbb{R}^2 \]

\[C(s, t) = \sqrt{1 - 2t} (\cos s, \sin s) \]

Curvature of \(C(\cdot, t) \) at \(s \):
\[k(s, t) = \frac{1}{\sqrt{1 - 2t}} \]

Inward normal vector of \(C(\cdot, t) \) at \(s \):
\[N(s, t) = - (\cos s, \sin s) \]

\[\frac{\partial C}{\partial t} = kN \]
Curve Shortening Flow

\[C(s, t) = \sqrt{1 - 2t} (\cos s, \sin s) \quad : \]

\[S^1 \times [0, \frac{1}{2}) \]

\[t=0 \]
Curve Shortening Flow

\[C(s, t) = \sqrt{1 - 2t} (\cos s, \sin s) \]

\[S^1 \times [0, \frac{1}{2}) \]
Theorem (Short Time Existence and Uniqueness)

Let $C(s) : S^1 \to \mathbb{R}^2$ be smooth. Then there exists $T > 0$ and a unique smooth map $C(s, t) : S^1 \times [0, T) \to \mathbb{R}^2$ such that

$$\frac{\partial C}{\partial t} = kN, \quad C(s, 0) = C(s)$$
\[C(s, t) = C(s) + r(s, t)N(s, 0) \]
Proof

\[C(s, t) = C(s) + r(s, t)N(s, 0) \]

\[\frac{\partial r}{\partial t} = \frac{1 - kr}{(1 - kr)^2 + r^2} \frac{\partial^2 r}{\partial s^2} + \text{lower order terms}, \]

where \(k = k(s, 0). \)
Why shortening?

\[r : \text{arclength} \quad T : \text{unit tangent vector} \]

\[L(t) = \text{length of } C(\cdot, t) = \int_{S^1} dr = \int_{S^1} \left< \frac{\partial C}{\partial s}, \frac{\partial C}{\partial s} \right>^{\frac{1}{2}} ds \]

\[L'(t) = \frac{\partial}{\partial t} \int_{S^1} \left< \frac{\partial^2 C}{\partial t \partial s}, \frac{\partial C}{\partial s} \right>^{\frac{1}{2}} ds \]

\[= \int_{S^1} \left< \frac{\partial^2 C}{\partial t \partial s}, T(s) \right> ds = \int_{S^1} \left< \frac{\partial^2 C}{\partial s \partial t}, T(s) \right> ds \]

\[= \int_{S^1} \left< \frac{\partial}{\partial s} (kN), T(s) \right> ds = \int_{S^1} k \left< \frac{\partial N}{\partial s}, T(s) \right> ds \]

\[= -\int_{S^1} k < N, \frac{\partial T}{\partial s} > ds = -\int_{S^1} k < N, \frac{\partial T}{\partial r} > dr \]

\[= -\int_{S^1} k^2 dr \]
Curve Shortening Flow
The theorem (Gage-Hamilton, Grayson) states:

The curve shortening flow shrinks any simple closed plane curve C to a point, and C becomes round as it evolves, in the sense that the ratio of the inscribed radius to the circumscribed radius approaches 1.
Curve Shortening Flow
“Proof”

Step 1. Any simple closed plane curve evolves in finite time to a convex curve (Grayson)

Step 2. Any convex plane curve evolves in finite time to a point, and the curve becomes round (Gage-Hamilton)
Evolution of curvature under the flow

\[\frac{\partial k}{\partial t} = \frac{\partial^2 k}{\partial s^2} + k^3 \]
Strong Maximum Principle for Heat Equation

\[\frac{\partial k}{\partial t} = \frac{\partial^2 k}{\partial s^2} + k^3 \]

\[k(s, 0) \geq 0 \implies k(s, t) > 0, \text{ for all } s \in S^1, t > 0. \]
Strong Maximum Principle for Heat Equation

\[\frac{\partial k}{\partial t} = \frac{\partial^2 k}{\partial s^2} + k^3 \]

\[k(s, 0) \geq 0 \iff k(s, t) > 0, \text{ for all } s \in S^1, t > 0. \]
Strong Maximum Principle for Heat Equation

\[\frac{\partial k}{\partial t} = \frac{\partial^2 k}{\partial s^2} + k^3 \]

\[k(s, 0) \geq 0 \implies k(s, t) > 0, \text{ for all } s \in S^1, t > 0. \]
Curve Shortening Flow
Curve Shortening Flow

\[A_1'(t) = - \int_{C_1} k \, dr = \alpha(t) - 3\pi \]

\[A_2'(t) = - \int_{C_2} k \, dr = -\alpha(t) - \pi \]

\[A_1(0) > 3A_2(0) \implies A_2(t) = 0 \text{ before } t = \frac{A_2(0)}{\pi} \]
Curve Shortening Flow

\[\int_C k \, ds = 2\pi \]
\[\int_C k \, ds = 2\pi \]

\[0 \leq \hat{\tau} < 2\pi \]
Curve Shortening Flow

\[\int_C k \, ds = 2\pi \]

\[\hat{r}(s_0) = 0 \]
Curve Shortening Flow

\[\int_C k \, ds = 2\pi \]
Curve Shortening Flow

\[\int_C k \, ds = 2\pi \]

\[\hat{t}(s) \]

\[\hat{t}(s_0) = 0 \]
\[\int_C k \, ds = 2\pi \]

As \(s \to s_0^-, \hat{\tau}(s) \to 2\pi \)
Curve Shortening Flow

$$\int_C k \, ds = 2\pi$$

As \(s \to s_0^- \), \(\hat{r}(s) \to 2\pi \)

\(\hat{r} \) is not continuous!
\[\int_C k \, ds = 2\pi \]

There exists a differentiable function \(\tau \) such that \(\tau(s) \equiv \hat{\tau}(s) \mod 2\pi \)}
There exists a differentiable function τ such that

$$\tau(s) \equiv \hat{r}(s) \pmod{2\pi}$$

$$T(s) = (\cos \tau(s), \sin \tau(s))$$
\[\int_C k \, ds = 2\pi \]

\[T(s) = (\cos \tau(s), \sin \tau(s)) \]

\[N(s) = (-\sin \tau(s), \cos \tau(s)) \]
\[\int_C k \, ds = 2\pi \]

Curve Shortening Flow

\[T(s) = (\cos \tau(s), \sin \tau(s)) \]

\[N(s) = (-\sin \tau(s), \cos \tau(s)) \]

\[k(s) = \langle \frac{dT}{ds}, N(s) \rangle \]

\[= \tau'(s) \]
\[
\int_C k \, ds = 2\pi \\
k(s) = \tau'(s) \\
\int_C k \, ds = \tau(\ell) - \tau(0)
\]
\[\int_C k \, ds = 2\pi \]

\[k(s) = \tau'(s) \]

\[\int_C k \, ds = \tau(\ell) - \tau(0) \]
\[\int_C k \, ds = 2\pi \]

\[k(s) = \tau'(s) \]

\[\int_C k \, ds = \tau(\ell) - \tau(0) = 2\pi \]

Curve Shortening Flow

\[\int_C k \, ds = 2\pi \]
Curve Shortening Flow

\[\int_C k \, ds = 2\pi \]

where

\[-\pi < j(s_0) < 0 \text{ or } 0 < j(s_0) < \pi \]

depending on whether \(\{ T(s_0^-), T(s_0^+) \} \) has positive orientation or negative orientation.
Curve Shortening Flow

\[\int_{C} k \, ds = 2\pi \]

\[\int_{\Gamma} k \, ds = 2\pi - j(s_0) \]

where

\[-\pi < j(s_0) < 0 \text{ or } 0 < j(s_0) < \pi \]

depending on whether \(\{T(s_0^-), T(s_0^+)\} \) has positive orientation or negative orientation.
Curve Shortening Flow

\[A'_1(t) = - \int_{C_1} k \, dr = \alpha(t) - 3\pi \]

\[A'_2(t) = - \int_{C_2} k \, dr = -\alpha(t) - \pi \]

\[A_1(0) > 3A_2(0) \implies A_2(t) = 0 \text{ before } t = \frac{A_2(0)}{\pi} \]
Mean Curvature Flow

Let M^n be an embedded (immersed) surface in \mathbb{R}^{n+1}.

\[
\frac{\partial C}{\partial t}(x, t) = H(x, t)N(x, t) \quad C(x, 0) = x \in M^n
\]
Any 3-dimensional simply connected, connected and closed manifold is diffeomorphic to the 3-dimensional sphere.
Poincare Conjecture
Any 3-dimensional simply connected, connected and closed manifold is diffeomorphic to the 3-dimensional sphere.
Recognize a sphere

$$(M^n, g)$$

g(x): an inner product structure on $T_x M^n$
Recognize a sphere

\[\left(M^n, g \right) \text{ Riemannian Manifold} \]

g(x): an inner product structure on \(T_x M^n \)
Recognize a sphere

S: 2-dim subspace of $T_x M^n$

Sectional Curvature of $S = \text{the Gaussian Curvature of } \sum^2$ at x
Recognize a sphere

S: 2-dim subspace of T_xM^n

$K(S) = \text{the sectional curvature of } S = K(u,v)$
Recognize a sphere

\[S^n : \text{the unit sphere in } \mathbb{R}^{n+1} \text{ with the induced Euclidean metric.} \]

The sectional curvature of any 2–dim subspace of the tangent space at any point on the sphere = 1.
Poincare Conjecture

Recognize a sphere

\(S^n \): the unit sphere in \(\mathbb{R}^{n+1} \) with the induced Euclidean metric.

\[K \equiv 1 \]
Poincare Conjecture

Recognize a sphere

\((M^n, g)\) : simply connected and connected Riemannian manifold

\[K \equiv 1 \implies M^n \text{ isometric (diffeomorphic) to } S^n \]
\[M^3 : \text{simply connected, connected and closed manifold} \]

Construct a metric \(g \) on \(M^3 \) such that \(K \equiv 1 \)
M^3: simply connected, connected and closed manifold

Put a Riemannian metric, say g_0, on M^3
M^3 : simply connected, connected and closed manifold

Put a Riemannian metric, say g_0, on M^3
\mathcal{M}^3: simply connected, connected and closed manifold

Put a Riemannian metric, say g_0, on \mathcal{M}^3
\(M^3 \) : simply connected, connected and closed manifold

Put a Riemannian metric, say \(g_0 \), on \(M^3 \)

Evolve \(g_0 \) in a clever way so that it will become round
Let $u \in T_x M^n$ be a unit vector. $\{u, u_2, \ldots, u_n\}$ orthonormal basis for $T_x M^n$. Define the Ricci curvature in the direction of u:

$$Ric(u) = K(u, u_2) + \ldots + K(u, u_n)$$
Let $u \in T_x M^n$ be a unit vector. $\{u, u_2, \ldots, u_n\}$ orthonormal basis for $T_x M^n$. Define the Ricci curvature in the direction of u:

$$\text{Ric}(u) = K(u, u_2) + \ldots + K(u, u_n)$$

Extend Ric to a linear map on $T_x M^n$.
Let $u \in T_xM^n$ be a unit vector. \{u, u_2, \ldots, u_n\} orthonormal basis for T_xM^n. Define the Ricci curvature in the direction of u:

$$\text{Ric}(u) = K(u, u_2) + \ldots + K(u, u_n)$$

Extend Ric to a linear map on T_xM^n.

Extend Ric to a bi-linear map on T_xM^n:

$$\text{Ric}(u, v) = \frac{1}{2}[\text{Ric}(u + v) - \text{Ric}(u) - \text{Ric}(v)]$$
Let \((M^n, g_0)\) be a closed Riemannian manifold.

Ricci flow on \((M^n, g_0)\) is a one-parameter family of metrics \(g(t)\) such that

\[
\frac{\partial g}{\partial t} = -2\operatorname{Ric}(g(t))
\]

\(g(0) = g_0\)
Let (S^n, g_0) be the standard unit sphere.
Define
\[g(t) = (1 - 2(n - 1)t)g_0 \]
Then
\[\frac{\partial g}{\partial t} = -2\text{Ric}(g(t)) \]
\[g(0) = g_0 \]
Theorem (Short Time Existence and Uniqueness)

Let \((M^n, g_0)\) be a closed Riemannian manifold. There exists a \(T > 0\) and a unique family of Riemannian metric \(g(t)\) for \(t \in [0, T)\) such that

\[
\frac{\partial g}{\partial t} = -2\text{Ric}(g(t))
\]

\(g(0) = g_0\)
Ricci Flow

\[\frac{\partial g}{\partial t} = -2\text{Ric}(g(t)) \]
Ricci Flow
Theorem (Hamilton)

If a simply connected, connected and closed \((M^3, g_0)\) has positive Ricci curvature, then the Ricci flow evolves \(g_0\) to a round metric.
Ricci Flow

\[
\frac{\partial g}{\partial t} = -2\text{Ric}(g(t))
\]
Ricci Flow
Ricci Flow
Ricci Flow
Ricci Flow
Ricci Flow
Ricci Flow

degenerate neck pinch
A gradient Ricci soliton is a Riemannian manifold \((M, g)\) together with a smooth function \(f\) such that

\[\text{Ric} + \text{Hess} f = \lambda g, \]

where \(\lambda\) is a constant. It is called shrinking, steady and expanding when \(\lambda > 0\), \(\lambda = 0\) and \(\lambda < 0\) respectively.
Shrinking Gradient Ricci Soliton

\[\text{Ric} + \text{Hess} f = \frac{1}{2} g \]
Shrinking Gradient Ricci Soliton

\[\text{Ric} + \text{Hess} f = \frac{1}{2} g \]

Define \(\Phi_t : M \to M \) with \(\Phi_0 = \text{Id} \) and \(\frac{\partial \Phi}{\partial t} = \nabla f \)

\[G(t) = (1 - t) \Phi_{-\ln(1-t)}^* g \]

\[\frac{\partial G}{\partial t} = -2\text{Ric}(G(t)) \]

\[G(0) = g \]
Theorem (Perelman)

An open 3-dimensional shrinking gradient Ricci soliton with bounded nonnegative sectional curvature is a quotient of $S^2 \times \mathbb{R}$ or \mathbb{R}^3.
Theorem (Perelman)

Any 3-dimensional simply connected, connected and closed manifold is diffeomorphic to the 3-dimensional sphere
Classifications of Shrinking Gradient Ricci Soliton

- Zero Weyl tensor

 Petersen and Wylie

 Cao, Wang and Zhu

- Harmonic Weyl tensor

 Fernández-López and Garcia-Rio

- Nonnegative sectional curvature and constant scalar curvature

 Petersen and Wylie
Theorem (C.)

Let \((M, g, f)\) be a complete non-compact shrinking gradient Ricci soliton with bounded nonnegative sectional curvature. Assume that there exists \(\delta > 0\) such that

\[
\int_M e^{\delta f} |\nabla R| \, dvol_g < \infty.
\]

Then \((M^n, g)\) is isometric to \(N \times_{\Gamma} \mathbb{R}^m\), where \(N\) is a compact Einstein manifold.
“Proof”

Step 1. Show the scalar curvature is constant

Step 2. Petersen and Wylie
Acknowledgement

• https://en.wikipedia.org

• http://www.numberphile.com

• http://www.ams.org

• http://homepages.warwick.ac.uk/~maseq/topping_RF_mar06.pdf
Thank You
\[W(g, f, \tau) = \int_M \left[\tau \left(|\nabla f|^2 + R \right) + f - n \right] (4\pi\tau)^{-n/2} e^{-f} dV \]
\[= (4\pi\tau)^{-n/2} \tau \mathcal{F}(g, f) + (4\pi\tau)^{-n/2} \int_M (f - n) e^{-f} dV, \]

\[\tilde{V}_{(p,0)}(\tau) := \int_M (4\pi\tau)^{-n/2} e^{-\xi(p,0)(q,\tau)} d\mu_{g(\tau)}(q) \]