Fractional Calculus and Smallest Eigenvalues

Jeffrey T. Neugebauer
Department of Mathematics and Statistics
Eastern Kentucky University

Nova Southeastern Mathematics Colloquium Series
March 12th, 2013
In order to talk about fractional calculus, we need to first mention the Gamma function.
In order to talk about fractional calculus, we need to first mention the Gamma function. The Gamma function can be thought of as a generalized factorial.

\begin{align*}
\Gamma(x) &= \int_0^\infty t^{x-1} e^{-t} \, dt, \\
\Gamma(x+1) &= x\Gamma(x), \\
\Gamma(n+1) &= n!.
\end{align*}
In order to talk about fractional calculus, we need to first mention the Gamma function. The Gamma function can be thought of as a generalized factorial.

Definition

The Gamma function $\Gamma(x)$ is defined by

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} \, dt.$$
In order to talk about fractional calculus, we need to first mention the Gamma function. The Gamma function can be thought of as a generalized factorial.

Definition

The Gamma function $\Gamma(x)$ is defined by

$$\Gamma(x) = \int_{0}^{\infty} t^{x-1} e^{-t} \, dt.$$

Here are the important properties of the Gamma function.

1. For each $x \in (0, \infty)$, $\Gamma(x + 1) = x\Gamma(x)$.
2. For $n \in \mathbb{N}$, $\Gamma(n + 1) = n!$.
The Gamma Function

Historical Background

The Fractional Integral and Derivative

Examples

Smallest Eigenvalues

Fractional Calculus and Smallest Eigenvalues
The original question that led to the name fractional calculus was: Can the meaning of a derivative of integer order \(\frac{d^ny}{dx^n} \) be extended to have meaning when \(n \) is a fraction?
The original question that led to the name fractional calculus was: Can the meaning of a derivative of integer order \(\frac{d^n y}{dx^n} \) be extended to have meaning when \(n \) is a fraction?

In 1695, after Leibniz first invented the notation \(\frac{d^n y}{dx^n} \), L’Hôpital wrote to Leibniz and asked him, ”What if \(n = 1/2?\)” Leibniz responded, ”It leads to a paradox, from which one day useful consequences will be drawn.”
The original question that led to the name fractional calculus was: Can the meaning of a derivative of integer order \(\frac{d^n y}{dx^n} \) be extended to have meaning when \(n \) is a fraction?

In 1695, after Leibniz first invented the notation \(\frac{d^n y}{dx^n} \), L’Hôpital wrote to Leibniz and asked him, ”What if \(n = 1/2? \)” Leibniz responded, ”It leads to a paradox, from which one day useful consequences will be drawn.”

In 1812, Laplace was the first to define a fractional derivative by means of an integral.
In 1819, the first mention of a derivative of arbitrary order appeared in a text.
In 1819, the first mention of a derivative of arbitrary order appeared in a text. Lacroix developed that when \(m \in \mathbb{N} \),

\[
\frac{d^n}{dx^n}(x^m) = m \cdot (m - 1) \cdot (m - 2) \cdots (m - (n + 1))x^{m-n}
\]

\[
= \frac{m!}{(m - n)!}x^{m-n}, \quad n \in \mathbb{N}, \quad m \geq n.
\]
In 1819, the first mention of a derivative of arbitrary order appeared in a text. Lacroix developed that when $m \in \mathbb{N}$,

$$\frac{d^n}{dx^n}(x^m) = m \cdot (m - 1) \cdot (m - 2) \cdots (m - (n + 1))x^{m-n}$$

$$= \frac{m!}{(m-n)!}x^{m-n}, \quad n \in \mathbb{N}, \quad m \geq n.$$

He then generalized the formula for all n, obtaining

$$\frac{d^n}{dx^n}(x^m) = \frac{\Gamma(m + 1)}{\Gamma(m - n + 1)}x^{m-n}.$$
In 1819, the first mention of a derivative of arbitrary order appeared in a text. Lacroix developed that when $m \in \mathbb{N}$,

$$\frac{d^n}{dx^n}(x^m) = m \cdot (m - 1) \cdot (m - 2) \cdots (m - (n + 1))x^{m-n}$$

$$= \frac{m!}{(m - n)!}x^{m-n}, \ n \in \mathbb{N}, \ m \geq n.$$

He then generalized the formula for all n, obtaining

$$\frac{d^n}{dx^n}(x^m) = \frac{\Gamma(m + 1)}{\Gamma(m - n + 1)}x^{m-n}.$$

Using this definition, he was able to show $\frac{d^{1/2}}{dx^{1/2}}(x) = \frac{2\sqrt{x}}{\sqrt{\pi}}$.

From there, many people, including Fourier, Abel, Liouville, and Riemann worked on fractional calculus.
From there, many people, including Fourier, Abel, Liouville, and Riemann worked on fractional calculus. In 1884, Laurent used contour integration to produce the definition for integration to an arbitrary order. This form was similar to both Riemann’s definition and Liouville’s definition, and today is commonly known as the Riemann-Liouville fractional integral.
From there, many people, including Fourier, Abel, Liouville, and Riemann worked on fractional calculus. In 1884, Laurent used contour integration to produce the definition for integration to an arbitrary order. This form was similar to both Riemann’s definition and Liouville’s definition, and today is commonly known as the Riemann-Liouville fractional integral. From there, other mathematicians, such as Heaviside, contributed to the theory of fractional calculus, but the amount of work published on the subject was modest at best.
From there, many people, including Fourier, Abel, Liouville, and Riemann worked on fractional calculus. In 1884, Laurent used contour integration to produce the definition for integration to an arbitrary order. This form was similar to both Riemann’s definition and Liouville’s definition, and today is commonly known as the Riemann-Liouville fractional integral.

From there, other mathematicians, such as Heaviside, contributed to the theory of fractional calculus, but the amount of work published on the subject was modest at best. In 1974, the first international conference on fractional calculus was held at the University of New Haven, Connecticut. The proceedings of that conference were published, and since 1974, fractional calculus has been a very popular research area.
From there, many people, including Fourier, Abel, Liouville, and Riemann worked on fractional calculus. In 1884, Laurent used contour integration to produce the definition for integration to an arbitrary order. This form was similar to both Riemann’s definition and Liouville’s definition, and today is commonly known as the Riemann-Liouville fractional integral.

From there, other mathematicians, such as Heaviside, contributed to the theory of fractional calculus, but the amount of work published on the subject was modest at best. In 1974, the first international conference on fractional calculus was held at the University of New Haven, Connecticut. The proceedings of that conference were published, and since 1974, fractional calculus has been a very popular research area.

Fractional calculus finds use in many fields of science and engineering, including fluid flow, electrical networks, and probability.
First, let’s see what happens when you integrate a function n times, where $n \in \mathbb{N}$.
First, let's see what happens when you integrate a function \(n \) times, where \(n \in \mathbb{N} \). We conjecture

\[
I_n^c f(x) = \int_c^x \int_c^{x_1} \cdots \int_c^{x_{n-1}} f(t) dt \, dx_{n-1} \cdots dx_2 \, dx_1
\]

\[
= \frac{1}{(n-1)!} \int_c^x (x - t)^{n-1} f(t) dt.
\]
First, let's see what happens when you integrate a function n times, where $n \in \mathbb{N}$. We conjecture

$$I_c^n f(x) = \int_c^x \int_c^{x_1} \cdots \int_c^{x_{n-1}} f(t) dt \, dx_{n-1} \cdots dx_2 \, dx_1$$

$$= \frac{1}{(n-1)!} \int_c^x (x - t)^{n-1} f(t) dt.$$

For $n = 2$,

$$I_c^2 f(x) = \int_c^x \int_c^{x_1} f(t) dt \, dx_1$$

$$= \int_c^x \int_t^x f(t) dx_1 \, dt$$

$$= \int_c^x (x - t) f(t) dt.$$
For $n = 3$, if we use the previous result,

$$I_3^c f(x) = \int_c^x \int_c^{x_1} \int_c^{x_2} f(t) dt \, dx_2 \, dx_1$$

$$= \int_c^x \left[\int_c^{x_1} \int_c^{x_2} f(t) dt \, dx_2 \right] \, dx_1$$

$$= \int_c^x \left[\int_c^{x_1} (x_1 - t)f(t) dt \right] \, dx_1$$

$$= \int_c^x \int_t^x (x_1 - t)f(t) \, dx_1 \, dt$$

$$= \int_c^x f(t) \frac{(x - t)^2}{2} dt.$$
If we continue in this fashion, we obtain

\[I^n_{c+} f(x) = \frac{1}{(n-1)!} \int_c^x (x - t)^{n-1} f(t) dt \]

\[= \frac{1}{\Gamma(n)} \int_c^x (x - t)^{n-1} f(t) dt. \]
If we continue in this fashion, we obtain

$$I_{c+}^n f(x) = \frac{1}{(n-1)!} \int_c^x (x-t)^{n-1} f(t) dt$$

$$= \frac{1}{\Gamma(n)} \int_c^x (x-t)^{n-1} f(t) dt.$$

Definition

For a function $f(x)$ defined on (c, ∞), define the Riemann-Liouville fractional integral of order $\alpha > 0$ of $f(x)$ by

$$I_{c+}^\alpha f(x) \frac{1}{\Gamma(\alpha)} \int_c^x (x-t)^{\alpha-1} f(t) dt,$$

provided the integral exists.
With the definition of the fractional integral, we can now define the fractional derivative.
With the definition of the fractional integral, we can now define the fractional derivative.

Definition

Let \(\alpha > 0 \). Let \(n = [\alpha] + 1 \). For a function \(f(x) \) defined on \((c, \infty)\), define the Riemann-Liouville fractional derivative of order \(\alpha \) of \(f(x) \) by

\[
D^\alpha_{c+} f(x) = \frac{d^n}{dx^n} I^{n-\alpha}_{c+} f(x) = \frac{1}{\Gamma(n-\alpha)} \frac{d^n}{dx^n} \int_{c}^{x} (x-t)^{n-\alpha-1} f(t) dt,
\]

provided the integral exists.
Let $k > -1$ and $n = \lfloor \alpha \rfloor + 1$. Then

$$D_0^\alpha x^k = \frac{\Gamma(k + 1)}{\Gamma(k - \alpha + 1)} x^{k-\alpha}$$
Let $k > -1$ and $n = \lfloor \alpha \rfloor + 1$. Then

$$D_0^\alpha x^k = \frac{\Gamma(k + 1)}{\Gamma(k - \alpha + 1)} x^{k-\alpha}$$

For example, if $\alpha = 1/2$, using the fact that $\Gamma(1/2) = \sqrt{\pi}$,

$$D_0^{1/2} 1 = \frac{\Gamma(1)}{\Gamma(1/2)} x^{-1/2} = \frac{1}{\sqrt{\pi}x}.$$
Let $k > -1$ and $n = \lfloor \alpha \rfloor + 1$. Then

$$D_{0+}^{\alpha} x^k = \frac{\Gamma(k+1)}{\Gamma(k-\alpha+1)} x^{k-\alpha}$$

For example, if $\alpha = 1/2$, using the fact that $\Gamma(1/2) = \sqrt{\pi}$,

$$D_{0+}^{1/2} 1 = \frac{\Gamma(1)}{\Gamma(1/2)} x^{-1/2} = \frac{1}{\sqrt{\pi}x}.$$

Note that if we try to take the $1/2$ derivative of $\frac{1}{\sqrt{\pi}x}$, we obtain

$$D_{0+}^{1/2} \frac{1}{\sqrt{\pi}x} = \frac{\Gamma(1/2)}{\Gamma(0)} \frac{1}{x\sqrt{\pi}}.$$
Let $k > -1$ and $n = \lceil \alpha \rceil + 1$. Then

$$D^\alpha_{0+} x^k = \frac{\Gamma(k+1)}{\Gamma(k - \alpha + 1)} x^{k-\alpha}$$

For example, if $\alpha = 1/2$, using the fact that $\Gamma(1/2) = \sqrt{\pi}$,

$$D^{1/2}_{0+} 1 = \frac{\Gamma(1)}{\Gamma(1/2)} x^{-1/2} = \frac{1}{\sqrt{\pi x}}.$$

Note that if we try to take the $1/2$ derivative of $\frac{1}{\sqrt{\pi x}}$, we obtain

$$D^{1/2}_{0+} \frac{1}{\sqrt{\pi x}} = \frac{\Gamma(1/2)}{\Gamma(0)} \frac{1}{x \sqrt{\pi}}$$

But $\Gamma(0)$ is not defined. However, since $\lim_{x \to 0} |\Gamma(x)| = \infty$, we can define $\frac{1}{\Gamma(0)} = 0$.
Let $k > -1$ and $n = \lfloor \alpha \rfloor + 1$. Then

$$D^\alpha_0 x^k = \frac{\Gamma(k + 1)}{\Gamma(k - \alpha + 1)} x^{k-\alpha}$$

For example, if $\alpha = 1/2$, using the fact that $\Gamma(1/2) = \sqrt{\pi}$,

$$D^{1/2}_0 1 = \frac{\Gamma(1)}{\Gamma(1/2)} x^{-1/2} = \frac{1}{\sqrt{\pi x}}.$$

Note that if we try to take the $1/2$ derivative of $\frac{1}{\sqrt{\pi x}}$, we obtain

$$D^{1/2}_0 \frac{1}{\sqrt{\pi x}} = \frac{\Gamma(1/2)}{\Gamma(0)} \frac{1}{x\sqrt{\pi}}$$

But $\Gamma(0)$ is not defined. However, since $\lim_{x \to 0} |\Gamma(x)| = \infty$, we can define $\frac{1}{\Gamma(0)} = 0$. Then $D^{1/2}_0 [D^{1/2}_0 1] = 0$.

Jeffrey T. Neugebauer
Nova Southeastern Mathematics Colloquium Series
Fractional Calculus and Smallest Eigenvalues
For $n \in \mathbb{N}$,

$$\frac{d^n}{dx^n} e^{ax} = a^n e^{ax}.$$
For $n \in \mathbb{N}$,

$$\frac{d^n}{dx^n} e^{ax} = a^n e^{ax}.$$

So we would expect $D^\alpha_{c+} e^{ax} = a^\alpha e^{ax}$. But this depends on c.
For $n \in \mathbb{N}$,

$$\frac{d^n}{dx^n} e^{ax} = a^n e^{ax}.$$

So we would expect $D^\alpha_{c+} e^{ax} = a^\alpha e^{ax}$. But this depends on c. For example, for $\alpha = 1/2$, let’s look at the standard Riemann-Liouville fractional derivative of e^x ($c = 0$).
For $n \in \mathbb{N}$,

$$\frac{d^n}{dx^n} e^{ax} = a^n e^{ax}.$$

So we would expect $D^\alpha_c e^{ax} = a^\alpha e^{ax}$. But this depends on c. For example, for $\alpha = 1/2$, let’s look at the standard Riemann-Liouville fractional derivative of e^x ($c = 0$). Using the Taylor Series of e^x, we obtain

$$D^{1/2}_0 e^x = D^{1/2}_0 (1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots)$$

$$= \frac{\Gamma(1)}{\Gamma(1/2)} x^{-1/2} + \frac{\Gamma(2)}{\Gamma(3/2)} x^{1/2} + \frac{\Gamma(3)}{2!\Gamma(5/2)} x^{3/2} + \frac{\Gamma(4)}{3!\Gamma(7/2)} x^{5/2} + \cdots$$

$$= \frac{1}{\sqrt{\pi}x} (1 + 2x + \frac{4}{3}x^2 + \frac{8}{15}x^3 + \cdots)$$

$$\neq e^x.$$
But for \(c = -\infty \), we have

\[
I^{1/2}_{-\infty} e^x = \frac{1}{\Gamma(1/2)} \int_{-\infty}^{\infty} (x - t)^{-1/2} e^t dt
\]

\[
= \frac{1}{\sqrt{\pi}} \sqrt{\pi} e^x
\]

\[
= e^x
\]
But for \(c = -\infty \), we have

\[
I_{-\infty}^{1/2} e^x = \frac{1}{\Gamma(1/2)} \int_{-\infty}^{x} (x - t)^{-1/2} e^t \, dt
\]

\[
= \frac{1}{\sqrt{\pi}} \sqrt{\pi} e^x
\]

\[
= e^x
\]

Thus \(D_{-\infty}^{1/2} e^x = \frac{d}{dx} I_{-\infty}^{1/2} e^x = \frac{d}{dx} e^x = e^x \).
But for $c = -\infty$, we have

$$I_{-\infty}^{1/2} e^x = \frac{1}{\Gamma(1/2)} \int_{-\infty}^{x} (x - t)^{-1/2} e^t \, dt$$

$$= \frac{1}{\sqrt{\pi}} \sqrt{\pi} e^x$$

$$= e^x$$

Thus $D_{-\infty}^{1/2} e^x = \frac{d}{dx} I_{-\infty}^{1/2} e^x = \frac{d}{dx} e^x = e^x$.

In general, for $c = -\infty$, $D_{-\infty}^{\alpha} e^{ax} = a^{\alpha} e^{ax}$.
Let’s consider one last example.
Let’s consider one last example. For \(f(x) = \sin x \),
\[f'(x) = \cos x = \sin(x + \pi/2), \]
\[f''(x) = -\sin x = \sin(x + (2\pi)/2), \]
\[f'''(x) = -\cos x = \sin(x + (3\pi)/2), \]
and in general, \(f^{(n)}(x) = \sin(x + (n\pi)/2) \).
Let’s consider one last example. For \(f(x) = \sin x \),
\[
\begin{align*}
 f'(x) &= \cos x = \sin(x + \pi/2), \\
 f''(x) &= -\sin x = \sin(x + (2\pi)/2), \\
 f'''(x) &= -\cos x = \sin(x + (3\pi)/2), \quad \text{and in general,} \\
 f^{(n)}(x) &= \sin(x + (n\pi)/2).
\end{align*}
\]
Similarly, for \(g(x) = \cos x \), \(g^{(n)}(x) = \cos(x + (n\pi)/2) \). In general,
\[
\begin{align*}
 D^\alpha_{-\infty} \sin x &= \sin(x + (\alpha\pi)/2) \quad \text{and} \\
 D^\alpha_{-\infty} \cos x &= \cos(x + (\alpha\pi)/2).
\end{align*}
\]
We consider the comparison of smallest eigenvalues for the eigenvalue problems

\[D_0^\alpha u + \lambda_1 p(t)u = 0, \quad 0 < t < 1, \quad (1) \]
\[D_0^\alpha u + \lambda_2 q(t)u = 0, \quad 0 < t < 1, \quad (2) \]
We consider the comparison of smallest eigenvalues for the eigenvalue problems

\[D_0^\alpha u + \lambda_1 p(t) u = 0, \quad 0 < t < 1, \] \tag{1}
\[D_0^\alpha u + \lambda_2 q(t) u = 0, \quad 0 < t < 1, \] \tag{2}

satisfying the boundary conditions

\[u(0) = u(1) = 0, \] \tag{3}
We consider the comparison of smallest eigenvalues for the eigenvalue problems

\begin{align*}
D_0^\alpha u + \lambda_1 p(t) u &= 0, \quad 0 < t < 1, \\
D_0^\alpha u + \lambda_2 q(t) u &= 0, \quad 0 < t < 1,
\end{align*}

satisfying the boundary conditions

\begin{equation}
\begin{split}
u(0) &= u(1) = 0,
\end{split}
\end{equation}

where \(1 < \alpha \leq 2\) is a real number, \(D_0^\alpha\) is the standard Riemann-Liouville derivative, and \(p(t)\) and \(q(t)\) are continuous nonnegative functions on \([0, 1]\), where neither \(p(t)\) nor \(q(t)\) vanishes identically on any compact subinterval of \([0, 1]\).
Definition

Let \mathcal{B} be a Banach space over \mathbb{R}. A closed nonempty subset \mathcal{P} of \mathcal{B} is said to be a cone provided

(i) $\alpha u + \beta v \in \mathcal{P}$, for all $u, v \in \mathcal{P}$ and all $\alpha, \beta \geq 0$, and

(ii) $u \in \mathcal{P}$ and $-u \in \mathcal{P}$ implies $u = 0$.
Definition

Let \mathcal{B} be a Banach space over \mathbb{R}. A closed nonempty subset \mathcal{P} of \mathcal{B} is said to be a cone provided

(i) $\alpha u + \beta v \in \mathcal{P}$, for all $u, v \in \mathcal{P}$ and all $\alpha, \beta \geq 0$, and

(ii) $u \in \mathcal{P}$ and $-u \in \mathcal{P}$ implies $u = 0$.

Definition

A cone \mathcal{P} is solid if the interior, \mathcal{P}°, of \mathcal{P}, is nonempty. A cone \mathcal{P} is reproducing if $\mathcal{B} = \mathcal{P} - \mathcal{P}$; i.e., given $w \in \mathcal{B}$, there exist $u, v \in \mathcal{P}$ such that $w = u - v$.
Definition

Let \mathcal{B} be a Banach space over \mathbb{R}. A closed nonempty subset \mathcal{P} of \mathcal{B} is said to be a cone provided

(i) $\alpha u + \beta v \in \mathcal{P}$, for all $u, v \in \mathcal{P}$ and all $\alpha, \beta \geq 0$, and

(ii) $u \in \mathcal{P}$ and $-u \in \mathcal{P}$ implies $u = 0$.

Definition

A cone \mathcal{P} is solid if the interior, \mathcal{P}°, of \mathcal{P}, is nonempty. A cone \mathcal{P} is reproducing if $\mathcal{B} = \mathcal{P} - \mathcal{P}$; i.e., given $w \in \mathcal{B}$, there exist $u, v \in \mathcal{P}$ such that $w = u - v$.

Krasnosel’skii showed that every solid cone is reproducing.
Definition

Let \(\mathcal{P} \) be a cone in a real Banach space \(\mathcal{B} \). If \(u, v \in \mathcal{B} \), \(u \leq v \) with respect to \(\mathcal{P} \) if \(v - u \in \mathcal{P} \). If both \(M, N : \mathcal{B} \to \mathcal{B} \) are bounded linear operators, \(M \leq N \) with respect to \(\mathcal{P} \) if \(Mu \leq Nu \) for all \(u \in \mathcal{P} \).
Definition

Let \mathcal{P} be a cone in a real Banach space \mathcal{B}. If $u, v \in \mathcal{B}, u \leq v$ with respect to \mathcal{P} if $v - u \in \mathcal{P}$. If both $M, N : \mathcal{B} \to \mathcal{B}$ are bounded linear operators, $M \leq N$ with respect to \mathcal{P} if $Mu \leq Nu$ for all $u \in \mathcal{P}$.

Definition

A bounded linear operator $M : \mathcal{B} \to \mathcal{B}$ is u_0-positive with respect to \mathcal{P} if there exists $0 \neq u_0 \in \mathcal{P}$ such that for each $0 \neq u \in \mathcal{P}$, there exist $k_1(u) > 0$ and $k_2(u) > 0$ such that $k_1 u_0 \leq Mu \leq k_2 u_0$ with respect to \mathcal{P}.
Lemma

Let \mathcal{B} be a Banach space over the reals, and let $\mathcal{P} \subset \mathcal{B}$ be a solid cone. If $M : \mathcal{B} \to \mathcal{B}$ is a linear operator such that $M : \mathcal{P}\{0\} \to \mathcal{P}^\circ$, then M is u_0-positive with respect to \mathcal{P}.
Theorem (Krasnosel’skii)

Let \mathcal{B} be a real Banach space and let $\mathcal{P} \subset \mathcal{B}$ be a reproducing cone. Let $L : \mathcal{B} \to \mathcal{B}$ be a compact, u_0-positive, linear operator. Then L has an essentially unique eigenvector in \mathcal{P}, and the corresponding eigenvalue is simple, positive, and larger than the absolute value of any other eigenvalue.
Theorem (Krasnosel’skii)

Let \(\mathcal{B} \) be a real Banach space and let \(\mathcal{P} \subset \mathcal{B} \) be a reproducing cone. Let \(L : \mathcal{B} \rightarrow \mathcal{B} \) be a compact, \(u_0 \)-positive, linear operator. Then \(L \) has an essentially unique eigenvector in \(\mathcal{P} \), and the corresponding eigenvalue is simple, positive, and larger than the absolute value of any other eigenvalue.

Theorem (Krasnosel’skii)

Let \(\mathcal{B} \) be a real Banach space and \(\mathcal{P} \subset \mathcal{B} \) be a cone. Let both \(M, N : \mathcal{B} \rightarrow \mathcal{B} \) be bounded, linear operators and assume that at least one of the operators is \(u_0 \)-positive. If \(M \leq N \), \(My_1 \geq \lambda_1 y_1 \) for some \(y_1 \in \mathcal{P} \) and some \(\lambda_1 > 0 \), and \(Ny_2 \leq \lambda_2 y_2 \) for some \(y_2 \in \mathcal{P} \) and some \(\lambda_2 > 0 \), then \(\lambda_1 \leq \lambda_2 \). Furthermore, \(\lambda_1 = \lambda_2 \) implies \(y_1 \) is a scalar multiple of \(y_2 \).
We derive comparison results for these eigenvalue problems by applying the previous theorems mentioned. To do this, we will define integral operators whose kernel is the Green’s function of $-D_{0+}^{\alpha} u(t) = 0$, (3), which is given by

$$G(t, s) = \begin{cases} \frac{[t(1-s)]^{\alpha-1} - (t-s)^{\alpha-1}}{\Gamma(\alpha)}, & 0 \leq s \leq t \leq 1, \\ \frac{[t(1-s)]^{\alpha-1}}{\Gamma(\alpha)}, & 0 \leq t \leq s \leq 1. \end{cases}$$

(4)
We derive comparison results for these eigenvalue problems by applying the previous theorems mentioned. To do this, we will define integral operators whose kernel is the Green’s function of $-D^{\alpha}_{0+} u(t) = 0$, (3), which is given by

$$G(t, s) = \begin{cases} \frac{[t(1-s)]^{\alpha-1} - (t-s)^{\alpha-1}}{\Gamma(\alpha)}, & 0 \leq s \leq t \leq 1, \\ \frac{[t(1-s)]^{\alpha-1}}{\Gamma(\alpha)}, & 0 \leq t \leq s \leq 1. \end{cases}$$

(4)

So $u(t)$ solves (1),(3) if and only if

$$u(t) = \lambda_1 \int_0^1 G(t, s)p(s)u(s)ds,$$
We derive comparison results for these eigenvalue problems by applying the previous theorems mentioned. To do this, we will define integral operators whose kernel is the Green’s function of

\[-D_{0+}^\alpha u(t) = 0, \quad (3), \]

which is given by

\[
G(t, s) = \begin{cases}
\frac{[t(1-s)]^{\alpha-1}-(t-s)^{\alpha-1}}{\Gamma(\alpha)}, & 0 \leq s \leq t \leq 1, \\
\frac{[t(1-s)]^{\alpha-1}}{\Gamma(\alpha)}, & 0 \leq t \leq s \leq 1.
\end{cases}
\] (4)

So \(u(t) \) solves (1),(3) if and only if

\[
u(t) = \lambda_1 \int_0^1 G(t, s)p(s)u(s)ds,
\]

and \(u(t) \) solves (2),(3) if and only if

\[
u(t) = \lambda_2 \int_0^1 G(t, s)q(s)u(s)ds.
\]
We derive comparison results for these eigenvalue problems by applying the previous theorems mentioned. To do this, we will define integral operators whose kernel is the Green's function of $-D_{0+}^\alpha u(t) = 0$, (3), which is given by

$$G(t, s) = \begin{cases} \frac{[t(1-s)]^{\alpha-1}-(t-s)^{\alpha-1}}{\Gamma(\alpha)}, & 0 \leq s \leq t \leq 1, \\ \frac{[t(1-s)]^{\alpha-1}}{\Gamma(\alpha)}, & 0 \leq t \leq s \leq 1. \end{cases}$$

(4)

So $u(t)$ solves (1),(3) if and only if

$$u(t) = \lambda_1 \int_0^1 G(t, s)p(s)u(s)ds,$$

and $u(t)$ solves (2),(3) if and only if

$$u(t) = \lambda_2 \int_0^1 G(t, s)q(s)u(s)ds.$$
To apply Krasnosel’skii’s theorems, we need to define a Banach space \mathcal{B} and a cone $\mathcal{P} \subset \mathcal{B}$.
To apply Krasnosel’skii’s theorems, we need to define a Banach space B and a cone $P \subset B$. Define the Banach space B by

$$B = \{ u : u = t^{\alpha-1}v, \, v \in C^1[0,1], \, v(1) = 0 \},$$

with the norm

$$||u|| = \sup_{t \in [0,1]} |v'(t)|.$$
To apply Krasnosel’skii’s theorems, we need to define a Banach space B and a cone $\mathcal{P} \subset B$. Define the Banach space B by

$$B = \{ u : u = t^{\alpha-1} v, v \in C^1[0, 1], v(1) = 0 \},$$

with the norm

$$\| u \| = \sup_{t \in [0,1]} |v'(t)|.$$

Define the cone

$$\mathcal{P} = \{ u \in B | u(t) \geq 0 \text{ for } t \in [0, 1] \}.$$
Lemma

The cone \mathcal{P} is solid in B and hence reproducing.
Lemma

The cone \mathcal{P} is solid in B and hence reproducing.

Proof: Define

$$\Omega := \{u \in B \mid u(t) > 0 \text{ for } t \in (0, 1), \quad v(0) > 0, \quad v'(1) < 0\}.$$ (5)
Lemma

The cone \mathcal{P} is solid in B and hence reproducing.

Proof: Define

$$\Omega := \{ u \in B \mid u(t) > 0 \text{ for } t \in (0,1), v(0) > 0, v'(1) < 0 \}.$$ \hspace{1cm} (5)

$\Omega \subset \mathcal{P}^\circ$. So \mathcal{P} is solid and hence reproducing.
Define the compact linear operators $M, N : \mathcal{B} \to \mathcal{B}$ by

$$Mu(t) = \int_{0}^{1} G(t, s)p(s)u(s)ds$$ \hspace{1cm} (6)$$

and

$$Nu(t) = \int_{0}^{1} G(t, s)q(s)u(s) \, ds.$$ \hspace{1cm} (7)$$
Lemma

The bounded linear operators M and N are u_0-positive with respect to \mathcal{P}.
Lemma

The bounded linear operators M and N are u_0-positive with respect to \mathcal{P}.

Proof: We show $M : \mathcal{P} \setminus \{0\} \rightarrow \Omega \subset \mathcal{P}^\circ$. Let $u \in \mathcal{P}$. So $u(t) \geq 0$.

Jeffrey T. Neugebauer
Nova Southeastern Mathematics Colloquium Series
Fractional Calculus and Smallest Eigenvalues
Lemma

The bounded linear operators M and N are u_0-positive with respect to \mathcal{P}.

Proof: We show $M : \mathcal{P} \setminus \{0\} \to \Omega \subset \mathcal{P}^\circ$. Let $u \in \mathcal{P}$. So $u(t) \geq 0$. Then since $G(t, s) \geq 0$ on $[0, 1] \times [0, 1]$ and $p(t) \geq 0$ on $[0, 1]$,

$$Mu(t) = \int_0^1 G(t, s)p(s)u(s)ds \geq 0,$$

for $0 \leq t \leq 1$. So $M : \mathcal{P} \to \mathcal{P}$.
Now let $u \in \mathcal{P}\{0\}$.
Now let $u \in \mathcal{P}\{0\}$. So there exists a compact interval $[\alpha, \beta] \subset [0, 1]$ such that $u(t) > 0$ and $p(t) > 0$ for all $t \in [\alpha, \beta]$. Then, since $G(t, s) > 0$ on $(0, 1) \times (0, 1)$,

$$Mu(t) = \int_{0}^{1} G(t, s)p(s)u(s)ds$$

$$\geq \int_{\alpha}^{\beta} G(t, s)p(s)u(s)ds$$

$$> 0,$$

for $0 < t < 1$.

Now let $u \in \mathcal{P}\setminus\{0\}$. So there exists a compact interval $[\alpha, \beta] \subset [0, 1]$ such that $u(t) > 0$ and $p(t) > 0$ for all $t \in [\alpha, \beta]$. Then, since $G(t, s) > 0$ on $(0, 1) \times (0, 1)$,

$$Mu(t) = \int_0^1 G(t, s)p(s)u(s)ds$$

$$\geq \int_\alpha^\beta G(t, s)p(s)u(s)ds$$

$$> 0,$$

for $0 < t < 1.$
Now

\[M_u(t) = t^{\alpha-1} \left(\int_0^1 \frac{(1-s)^{\alpha-1}}{\Gamma(\alpha)} p(s)u(s)\,ds \right) \]

\[- t^{1-\alpha} \int_0^t \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} p(s)u(s)\,ds \].
Now

\[Mu(t) = t^{\alpha-1} \left(\int_0^1 \frac{(1 - s)^{\alpha-1}}{\Gamma(\alpha)} p(s) u(s) ds \right) \]

\[- t^{1-\alpha} \int_0^t \frac{(t - s)^{\alpha-1}}{\Gamma(\alpha)} p(s) u(s) ds \] .

Let

\[v(t) = \int_0^1 \frac{(1 - s)^{\alpha-1}}{\Gamma(\alpha)} p(s) u(s) ds - t^{1-\alpha} \int_0^t \frac{(t - s)^{\alpha-1}}{\Gamma(\alpha)} p(s) u(s) ds . \]
So \(v(0) = \int_0^1 \frac{(1-s)^{\alpha-1}}{\Gamma(\alpha)} p(s) u(s) ds > 0 \)
So \(v(0) = \int_0^1 \frac{(1-s)^{\alpha-1}}{\Gamma(\alpha)} p(s)u(s)ds > 0 \) and

\[
v'(1) = (\alpha - 1) \int_0^1 \frac{(1-s)^{\alpha-1}}{\Gamma(\alpha)} p(s)u(s)ds
- (\alpha - 1) \int_0^1 \frac{(1-s)^{\alpha-2}}{\Gamma(\alpha)} p(s)u(s)ds < 0.
\]
So \(v(0) = \int_0^1 \frac{(1-s)^{\alpha-1}}{\Gamma(\alpha)} p(s) u(s) ds > 0 \) and

\[
v'(1) = (\alpha - 1) \int_0^1 \frac{(1-s)^{\alpha-1}}{\Gamma(\alpha)} p(s) u(s) ds \]

\[
- (\alpha - 1) \int_0^1 \frac{(1-s)^{\alpha-2}}{\Gamma(\alpha)} p(s) u(s) ds < 0.
\]

So \(M : \mathcal{P}\setminus\{0\} \to \Omega \subset \mathcal{P}^\circ. \)
Notice that

\[\Lambda u = Mu = \int_0^1 G(t, s)p(s)u(s)ds, \]

if and only if

\[D_{\alpha}^0 u(t) + \Lambda p(t)u(t) = 0, \]

with

\[u(0) = u(1) = 0. \]
Notice that

$$\Lambda u = Mu = \int_{0}^{1} G(t, s)p(s)u(s)ds,$$

if and only if

$$u(t) = \frac{1}{\Lambda} \int_{0}^{1} G(t, s)p(s)u(s)ds,$$

So the eigenvalues of (1),(3) are reciprocals of eigenvalues of M, and conversely.

Similarly, eigenvalues of (2),(3) are reciprocals of eigenvalues of N, and conversely.
Notice that

$$\Lambda u = Mu = \int_0^1 G(t, s)p(s)u(s)ds,$$

if and only if

$$u(t) = \frac{1}{\Lambda} \int_0^1 G(t, s)p(s)u(s)ds,$$

if and only if

$$D_{0+}^\alpha u(t) + \frac{1}{\Lambda} p(t)u(t) = 0, \quad 0 < t < 1,$$

with

$$u(0) = u(1) = 0.$$
Notice that

\[\Lambda u = Mu = \int_0^1 G(t, s)p(s)u(s)ds, \]

if and only if

\[u(t) = \frac{1}{\Lambda} \int_0^1 G(t, s)p(s)u(s)ds, \]

if and only if

\[D_{0+}^\alpha u(t) + \frac{1}{\Lambda} p(t)u(t) = 0, \quad 0 < t < 1, \]

with

\[u(0) = u(1) = 0. \]

So the eigenvalues of (1), (3) are reciprocals of eigenvalues of \(M \), and conversely.
Notice that

\[\Lambda u = Mu = \int_{0}^{1} G(t, s)p(s)u(s)ds, \]

if and only if

\[u(t) = \frac{1}{\Lambda} \int_{0}^{1} G(t, s)p(s)u(s)ds, \]

if and only if

\[D_{0+}^{\alpha} u(t) + \frac{1}{\Lambda} p(t)u(t) = 0, \quad 0 < t < 1, \]

with

\[u(0) = u(1) = 0. \]

So the eigenvalues of (1),(3) are reciprocals of eigenvalues of \(M \), and conversely. Similarly, eigenvalues of (2),(3) are reciprocals of eigenvalues of \(N \), and conversely.
Theorem

Let B, P, M, and N be defined as earlier. Then M (and N) has an eigenvalue that is simple, positive, and larger than the absolute value of any other eigenvalue, with an essentially unique eigenvector that can be chosen to be in P°.
Theorem

Let B, P, M, and N be defined as earlier. Then M (and N) has an eigenvalue that is simple, positive, and larger than the absolute value of any other eigenvalue, with an essentially unique eigenvector that can be chosen to be in P°.

Theorem

Let B, P, M, and N be defined as earlier. Let $p(t) \leq q(t)$ on $[0,1]$. Let Λ_1 and Λ_2 be the eigenvalues defined in the previous theorem associated with M and N, respectively, with the essentially unique eigenvectors u_1 and $u_2 \in P^\circ$. Then $\Lambda_1 \leq \Lambda_2$, and $\Lambda_1 = \Lambda_2$ if and only if $p(t) = q(t)$ on $[0,1]$.
The following theorem is an immediate consequence of the relationship between the eigenvalues of M and (1),(3), and the eigenvalues of N and (2),(3), and the previous two theorems.
The following theorem is an immediate consequence of the relationship between the eigenvalues of M and (1),(3), and the eigenvalues of N and (2),(3), and the previous two theorems.

Theorem

Assume the hypotheses of the previous theorem. Then there exists smallest positive eigenvalues λ_1 and λ_2 of (1),(3) and (2),(3), respectively, each of which is simple, positive, and less than the absolute value of any other eigenvalue of the corresponding problems. Also, eigenfunctions corresponding to λ_1 and λ_2 may be chosen to belong to P°. Finally, $\lambda_1 \geq \lambda_2$, and $\lambda_1 = \lambda_2$ if and only if $p(t) = q(t)$ for all $t \in [0, 1]$.