Involvement of ACGME-Trained D.O. Residents in the Osteopathic Community

More than 50 percent of those graduating from osteopathic medical schools complete residencies in programs accredited by the Accreditation Council for Graduate Medical Education (ACGME). In 1985, as a result of the decline in the availability of osteopathic residencies, the American Osteopathic Association (AOA) permitted graduates of osteopathic medical schools (D.O.s) to complete postdoctoral training in ACGME-accredited programs.

While this reduced the pressure on osteopathic medicine to have an adequate number of residency positions for its graduates and helped to ameliorate the shortage that allopathic medicine was experiencing of those who entered primary care fields, it created new problems for the osteopathic medical community. While many elected to complete an allopathic residency because they perceived the quality of training was better, others did so because of geographic reasons (e.g., about 75 percent of AOA-approved internships are located in seven states).

However, those osteopathic physicians who were completing ACGME residencies were receiving little or no training in osteopathic manipulative treatment (OMT). It was hypothesized that D.O.s in ACGME-accredited programs had not lost their interest in their osteopathic roots but instead had experienced institutional barriers in continuing to be affiliated with the osteopathic family.

A 12-item national survey was conducted involving D.O. residents who were in ACGME or AOA/ACGME dually accredited programs, as well as those in military programs. Of the 1,354 surveyed, 447 responses were returned, with two thirds of the respondents indicating they were interested in completing the American Osteopathic Board of Family Practice (AOBFP) certification examination. Almost 94 percent indicated their support for increased efforts to transition allopathic residencies into those that would become dually accredited or parallel programs. Also, more than 80 percent indicated they had an interest in a program that had osteopathic mentors for D.O.s in allopathic residencies.

The authors recommend that the osteopathic medical profession has the responsibility to maintain communication with D.O.s who complete ACGME-accredited residency training.

(Scott SC, O’Connor EM, and Marlow RA. Measuring awareness, interest, and involvement in the osteopathic community through board certification: a survey of D.O. residents in ACGME-accredited training programs. JAOA. 109:302-311;2009.)

Small Gifts Influence Student Physicians

Even simple and inexpensive gifts like coffee mugs and pencils appear to influence how physicians prescribe. One medical school study showed that attitudes toward a drug designed to lower cholesterol were more positive among students whose school permitted them to receive gifts from pharmaceutical companies. A report in the Archives of Internal Medicine indicated it made no difference how small the gift was. The University of Miami, where gifts are permitted, was compared to the University of Pennsylvania, where they are not. This included 352 third- and fourth-year students who participated in a psychological test focusing on Lipitor and the generic version of Zocor. The more expensive Lipitor was viewed more favorably by the students. After providing gifts to fourth-year Miami students that included Lipitor clipboards, they viewed that drug more positively. The investigators attributed this to the powerful effect of branding. They also indicated that practicing physicians who consider themselves more expert feel they are not susceptible to such influence.

Training in the Fourth Year of Medical School

Most of the fourth year of medical school includes student-chosen electives. They also tend to choose rotations at institutions where they would like to match. Residency program directors (PDs) from 43 residency programs were asked what clinical competencies students should acquire in their fourth year that they do not obtain during their third year, and how should the fourth year be revised to better prepare students for internship?

PDs were contacted at the most commonly matched programs of 10 specialties. Of 30 programs, 21 were university-based, 7 were community-based only, and 2 were community-based with university affiliations. Difficulties reported by interns were lack of self-reflection (inability to acknowledge one’s weaknesses, receive feedback, and improvement). PDs recommended that during the fourth year of medical school, students should acquire competencies in:

- the effective use of evidence-based medicine
- advanced clinical reasoning
- near intern-level independence
- capacity to care for more patients
- responsibility and reliability
- ownership of patient care
- communication with patients
- professionalism
- medical knowledge

Some PDs recommended that in a four-week rotation, students should work extensively with a senior resident or attending to enhance history-taking and physical exam techniques, expand skills in patient care, practice-based learning and improvement, and system-based practice competencies. The authors believed that the study illustrated the need for fourth-year students to have more effective roles in patient care, and that it should contribute to the natural progression that leads from the third year and prepares them for internship.

Learning Cross-Sectional Anatomy Using Virtual Dissection

In an era when CT and MRI scans are performed frequently, it is important for medical students to learn cross-sectional anatomy. Many software packages now exist that can provide such instruction including one that is available from the National Library of Medicine called VHD (Virtual Human Dissector) that provides a complete three-dimensional representation of the male and female human body.

The University of Durham uses this for undergraduate medical school teaching both formally and through student self-directed study. A study was conducted at this medical school in which one group of students used the VHD in the computer suite only while a second group took the more traditional route that employed dissection, prosection, models, and textbooks. Both groups completed the same pre-session, mid-session, and post-session tests. There was an increase in score from the pre-session to post-session tests for both groups, and no statistically significant difference was noted in any of the tests with either group.

The authors concluded that using the VHD is an equally effective learning tool as the standard methods of learning anatomy (i.e., dissection, prosections, and manuals). The VHD allows users to examine at the same time the anatomy of the viscera or entire organ systems in 2D and 3D views and to be taught simultaneously with clinical skills. In addition, body systems can be reviewed in a variety of orientations, and a virtual slice can be seen any number of times.

Analyzing the SOMOSAT Self-Assessment Tool

New York University School of Medicine adopted an unfunded, Web-based self-assessment tool for its second-year students. It provides an opportunity for the students to receive feedback from a seven-month course they complete in the mechanisms of disease organized by organ system. The assessment tool is called the School of Medicine Online Self-Assessment Tool (SOMOSAT), which provides a series of organ system-based modules. SOMOSAT allows students to assess their own knowledge as well as offers them additional resources for both study and learning.

The 454 multiple-choice questions address pathophysiology, pharmacology, and pathology of organ system disease, with most questions derived from collaboration between students and faculty members. The criteria used are similar to the questions written for the National Board of Medical Examiners and the American Board of Internal Medicine. Each of eight modules includes 50-60 questions and is organ system-based, including circulation, respiration, excretion, digestion, the endocrine system, reproductive system, musculoskeletal system, and the hematological system. Students are informed that the purpose is to provide a self-assessment of their strengths and weaknesses within each organ system. About two thirds of the students participated in any given module, and about 90 percent completed at least one module.

SOMOSAT was well received by the students and appeared to enhance their knowledge and competence, permitting them to focus on areas that needed most attention. The authors advocate more Web-based learning in medical school education.

Biomedical Informatics: A Formal Academic Discipline

Biomedical informatics (BMI) is concerned with the methods and capabilities for developing models for understanding biomedical and health care processes, acquiring data characterizing biomedical/health care processes, representation of biomedical and health care processes, storage of data, analytic processes for using the data, generation of knowledge from data, management of knowledge, application of knowledge to facilitate problem solving, decision making, optimization of processes and workflow.

It also is concerned with social, cultural, cognitive, organizational, and educational use and application of data and knowledge. The subdisciplines that BMI encompasses today include:

- bioinformatics - molecular level
- imaging informatics - organ/tissue level
- clinical informatics - person level
- public health informatics - population level

BMI professionals have the role to be both the mediator and collaborator between the world of computer science and the world of medicine. They have the role of understanding the information and decision-making needs of researchers and practitioners in biomedicine and health to develop and apply methods and procedures to meet those needs.

(Greenes PA and Shortliffe EH. Informatics in biomedicine and health care. Academic Medicine. 84:818-820,2009.)
Early Student Contact with Patients at New Schools

The new allopathic medical school at Hofstra University in Long Island, New York, and at least at two osteopathic medical schools are including early clinical experience for their students. Many medical schools up to now were reluctant to include early clinical experiences in their curriculum because of the demands on the students during their first and second years. Hofstra, for example, intends to send first-year medical students out with ambulance crews. It intends to enter its charter class of 40 in 2011 and is currently seeking preliminary accreditation. The school will include North Shore and the Long Island Jewish Health System as its partners.

Since this will provide access to a fleet of 60 ambulances, early exposure by students using this asset is possible. Working with the ambulance crews will allow students to learn basic EMT skills. In addition, students will be able to track these patients over months or years including at home, in the hospital, rehab center, or nursing home. The students also will probably be spending a day a week in the hospital from the beginning of their first year of medical school.

The accrediting body, Liaison Committee on Medical Education, is encouraging this approach. Florida International University, also a new medical school, will be dividing its initial class of 43 students into four groups focusing on a predominantly Hispanic, African-American, Caribbean, or Jewish neighborhood. In the spring of 2010, the students will be assigned to families they will be visiting in their homes twice monthly over a three-year period to follow the progression of their medical conditions. Rocky Vista University in Parker, Colorado, a new osteopathic medical school, has its inaugural class of 152 perform community service in domestic violence shelters, a drug-and-alcohol treatment center, a migrant worker clinic, or other public health facilities.

(Managan K. The Chronicle of Higher Education. May 22, 2009)

Simulation-Based Emergency Med Curriculum

In a study conducted by Northwestern University Feinberg School of Medicine faculty, it was postulated that a simulation-based pediatric emergency medicine curriculum for pediatric emergency medicine residents would improve resident performance. A controlled evaluation study was performed that employed six instructional and three evaluation simulation scenarios. Each case lasts about 15 minutes with a debriefing session following for another 15–30 minutes. The problems addressed included an infant in shock, tachycardia, altered mental status, and trauma. Each case had a simulation flow diagram, scripts for use by actors playing a nurse, parent, or historian, as well as an instructor’s guide. Case materials are available at http://pediatrics.patientsimulation.net/emsct/.

Cases were piloted with a new group of senior pediatric residents. Evaluation instruments were developed in concert with instructional cases, and both are similar. Checklists are used containing 37–61 items. A nurse and nurse practitioner were trained to be evaluators, but faculty experts reviewed videos with these raters to provide feedback. Also employed were high-fidelity human patient simulators called the Laerdal SimBaby mannequin that simulates heart sounds, respiratory movement, and peripheral pulses. It also can be intubated endotracheally, ventilated, and receive interosseous and intravenous access. In addition, it responds automatically to interventions by producing changes in cardiac rhythm after being defibrillated. It was noted that the project produced a valid reproducible pediatric emergency medicine instructional and evaluation curriculum with modest gains in residents trained later in the academic year.

Continuing Medical Education Credit Form

One (1) hour of continuing medical education credit may be obtained by reading the Medical Education Digest and completing the following evaluation that is being used to assess the reader's understanding of the content. Please circle the answers you believe to be correct for all four questions located on this two-sided form. To acquire CME credit, physicians must mail, fax, or deliver the form (also available online at http://medicine.nova.edu, including both the completed quiz and evaluation form by **August 15, 2009** to: Office of Education, Planning, and Research, Nova Southeastern University College of Osteopathic Medicine, 3200 South University Drive, Fort Lauderdale, Florida 33328. Email: lspeiser@nova.edu; Fax: (954) 262-3536. **Please complete and return the evaluation form attached on the reverse side by fax or email.**

AOA or AMA No. ___________________ Print Full Name ___________________

The correct answers will be published in the next issue of the Medical Education Digest.

1. The use of the virtual dissection software that was derived from the National Library of Medicine and used at the University of Durham:
 a. Resulted in test scores that were far superior than those using traditional anatomy instruction
 b. Was statistically significantly better than traditional anatomy instruction
 c. Was shown to be a completely useless teaching modality
 d. Permitted users to examine organ systems in 2D and 3D views

2. Residency directors who were asked about the training of fourth-year medical students:
 a. Felt that fourth-year medical students should have an intensive required curriculum
 b. Advocated that they have four-week rotations working with senior residents in areas such as history taking and physical examination skills
 c. Believed that fourth-year students need to have less of a role in patient care
 d. Advocated that the fourth-year students should complete their clinical rotations only in university-based hospitals

3. A study of students at two medical schools, one where small gifts from drug companies were permitted and one where these were not, resulted in:
 a. Positive change in attitude about a drug when they received a small gift that had the drug's name on it
 b. Attitudes about the drug that were identical with students from institutions permitting students to accept small gifts and institutions that did not
 c. Positive change in attitudes about drugs among students only if they received relatively expensive gifts (e.g., stethoscopes)
 d. Students feeling less positively about a drug derived from a company that provided gifts to them

4. One of the subdisciplines of biomedical informatics includes bioinformatics. This subdiscipline is concerned about matters that are at the:
 a. Population level
 b. Molecular level
 c. Organ/tissue level
 d. Person level

Answers to the May/June 2009 CME questions: 1. (d) 2. (b) 3. (a) 4. (c)

Target Audience and Objectives

The target audience includes physicians who have faculty appointments at a medical school or who train residents and fellows in hospital-based environments. It also is for non-physician faculty members who have the responsibility for teaching medical students and others who seek education in the continuum of medical education (e.g., residency, continuing education). Also, since residents are typically responsible during their training to train medical students, they too are part of the audience to which the Medical Education Digest is directed.

- To provide an overview from the world literature of medical education knowledge, concepts, and skills of contemporary, new, and innovative ways to facilitate learning among medical students, residents, and practicing physicians
- To identify sources of information regarding the medical education process
- To create curiosity among those responsible for the medical education process to read in depth some of those articles that are summarized in the Medical Education Digest.
July-August 2009
Medical Education Digest

In a continuing effort to fulfill your professional interests and to improve the educational quality of continuing education, please complete this form. Please darken bubble ☐

1) Your field / degree: ☐ MD ☐ DO/AOA # __________________________

<table>
<thead>
<tr>
<th>Strongly Agree</th>
<th>Agree</th>
<th>Neither Agree Nor Disagree</th>
<th>Disagree</th>
<th>Strongly Disagree</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2) Reading this issue of Medical Education Digest has influenced the way that I will treat future patients.

3) The contents of this issue will be useful in my practice.

4) Was disclosure of commercial relationships made? ☐ Yes ☐ No

5) Were off-label products described? ☐ Yes ☐ No

6) Did you perceive any inappropriate commercial bias or influence? ☐ Yes ☐ No

7) What is the best way to contact you in reference to future articles?

☐ Phone ☐ Email ☐ Correspondence ☐ Other

If you desire credit, please complete the areas below:

I have read this issue, approved for 1 hour of AMA-PRA category 1 credit & AOA category 1-B credit.

Signature __________________________ Date __________________________

PLEASE PRINT THE FOLLOWING:

Name: __________________________ Tel: __________________________ Fax: __________________________

Mailing Address: __________________________ Email address: __________________________

Accreditation Statements

ACCME
Nova Southeastern University College of Osteopathic Medicine is accredited by the ACCME to provide medical education for physicians. This activity has been planned and implemented in accordance with the Essential Areas and Policies of the Accreditation Council for Continuing Medical Education through Nova Southeastern University College of Osteopathic Medicine. Nova Southeastern University Health Professions Division designates this educational activity for a maximum of one (1) hour towards the AMA Physician's Recognition Award Category 1 Credit(s)™. Physicians should only claim credit commensurate with the extent of their participation in the activity.

AOA
Nova Southeastern University College of Osteopathic Medicine is an accredited Category 1 sponsor of the American Osteopathic Association. One (1) hour of continuing medical education credit in Category 1-B is being offered through the American Osteopathic Association for this program.

Grievance Policy
Complaints should be submitted in writing to the Department of Continuing Medical Education, Nova Southeastern University Health Professions Division, Terry Building, 3200 S. University Drive, Room 1379, Fort Lauderdale, FL 33328.