2000

Skeletal Architecture and Density Banding in Diploria strigosa by X-ray Computed Tomography

Kevin P. Helmle
Nova Southeastern University, kevinh@nova.edu

Richard E. Dodge
Nova Southeastern University, dodge@nova.edu

R. A. Ketcham
Department of Geological Sciences

Follow this and additional works at: https://nsuworks.nova.edu/occ_facpresentations

Part of the Marine Biology Commons, and the Oceanography and Atmospheric Sciences and Meteorology Commons

NSUWorks Citation

This Conference Proceeding is brought to you for free and open access by the Department of Marine and Environmental Sciences at NSUWorks. It has been accepted for inclusion in Marine & Environmental Sciences Faculty Proceedings, Presentations, Speeches, Lectures by an authorized administrator of NSUWorks. For more information, please contact nsuworks@nova.edu.
Skeletal architecture and density banding in Diploria strigosa by X-ray computed tomography

K. P. Helmle¹, R. E. Dodge¹, and R. A. Ketcham²

Abstract Density bands in corals have long been considered a valuable tool for reconstructing past environmental and climatic conditions. X-radiographs reveal density banding within a skeletal slab, but provide little information about the skeletal variability causing banding. The skeletal architecture of Diploria strigosa was analyzed by X-radiography, X-ray computed tomography, and image analysis to identify the specific skeletal elements responsible for density banding. Three-dimensional skeletal reconstructions, density-band reconstructions, and skeletal animations were created to assess the apparent changes in skeletal structure associated with density banding. Measurements were made of the dissepiments, thecae, septa, and columellae to determine how element size related to density banding. Dissepiment spacing and thecal wall thickness exhibited no consistent variation relative to density. Density bands were associated with thickening of septal and columellar structures. X-ray computed tomography provided an effective tool for revealing density banding as well as measuring variations in skeletal elements.

Keywords Coral skeleton, Density banding, Skeletal architecture, X-ray computed tomography

Introduction

Cyclic variations in skeletal structure of long-lived reef corals produce annual density bands evident by X-radiography and X-ray computed tomography. Corals generally accrete one high- and low-density skeletal band annually (Knutson et al. 1972, Dodge and Thompson 1974, Hudson et al. 1976, Wellington and Glynn 1983). Massive reef-building corals grow on the order of 1 cm·yr⁻¹ over a life span of several centuries; because of this, density bands record growth over a long sequence of time. Density bands result from variations in coral growth, which reflect changing environmental conditions. The chronological reliability of density bands along with the chemical composition of the calcium carbonate (CaCO₃) skeleton provide valuable records for reconstructing past environmental and climatic conditions (Lough and Barnes 1990, Swart et al. 1996, Druffel 1997, Grottoli 1999).

Skeletal density has previously been shown to correlate with light (Knutson et al. 1972, Buddemeier 1974, Wellington and Glynn 1983), temperature (Hudson et al. 1976, Highsmith 1979, Lough et al. 1999), cloud cover, and rainfall (Lough and Barnes 1990) on annual and seasonal timeframes. Skeletal records also reflect growth responses to anthropogenic perturbations such as sedimentation (Loya 1976, Dodge and Brass 1984, Barnes and Lough 1999), oil dispersants (Lewis 1971, Knap et al. 1983), and lead pollution (Dodge and Gilbert 1984). Because many factors can affect coral growth, it has proven difficult to define the environmental cause and physiological effect responsible for density-band formation. Identifying the skeletal basis of density banding is a necessary step and essential to accurately interpret banding patterns and the associated trace element and isotopic records (Dodge et al. 1992, Barnes and Lough 1996).

Due to variability across coral taxa and a lack of interspecies comparisons, the skeletal variations responsible for density banding are not completely understood. Buddemeier (1974) demonstrated that neither organic content nor trace element levels were substantial enough to cause the density variations associated with banding. Buddemeier et al. (1974) proposed two major alternatives for density-band formation: 1) the orderliness in which aragonite needles are deposited, and 2) the variation in size and spacing of the skeletal elements.

Barnes and Devereux (1988) termed the organization of aragonite needles or crystals as “micro-architecture” and the organization of skeletal elements (e.g., dissepiments, septa, and thecae) as “meso-architecture”. They analyzed the density of coral skeleton (Porites) by gamma-densitometry, buoyant weight, and powdered skeleton techniques and found that variations in micro-architecture were insufficient to account for density banding, further proposing a general thickening of the skeletal meso-architecture as the primary cause of density banding.

Dodge et al. (1992) analyzed the skeletal basis of density banding by image analysis of macro-photographs and X-radiographs of several Montastraea annularis colonies from South Florida, the Florida Keys, St. Croix, the Bahamas, and Mexico. Results were consistent at all sites and indicated that dissepiments and septa of the endotheca exhibited no systematic variation in thickness or spacing. They attributed high-density bands to increased thickening of exothecal dissepiments and costae.

The common trait of density-band formation, revealed by the work of Macintyre and Smith (1974), Emiliani et al. (1978), Barnes and Devereux (1988), Dodge et al. (1992), Barnes and Lough (1993), Taylor et al. (1993), Le

¹ K. P. Helmle and R. E. Dodge: Nova Southeastern University, Oceanographic Ctr.
8000 N. Ocean Drive, Dania Beach, FL, 33004 USA kevinh@nova.edu
² R. A. Ketcham: Department of Geological Sciences, C1110, University of Texas, Austin, TX, 78712 USA
Skeletal density has almost exclusively been measured by optical densitometry of X-radiographs and gamma densitometry of medially sectioned skeletal slabs (Buddemeier et al. 1974, Dodge and Brass 1984, Chalker et al. 1985, Chalker and Barnes 1990, Dodge et al. 2000). X-radiographs provide a picture of density variation that is subject to confounding variables associated with the orientation and overlap of skeletal structures (Barnes and Lough 1989, Barnes and Lough 1990, Barnes and Taylor 1993).

Le Tissier et al. (1994) found that X-radiograph apparent banding patterns are not solely the product of variations in skeletal thickening; rather, they can result from overlap of non-thickened skeletal structures based on their size and orientation to the X-ray beam. Further, they suggested that systematic variation in thickness of skeletal elements themselves, as opposed to banding patterns, provide the most accurate record of changes in coral growth.

High-resolution X-ray computed tomography (CT) provides images of coral skeleton which can be used to measure variations in thickness and spacing of skeletal elements while still providing a density-band pattern similar to that of an X-radiograph. Computed tomography has been used to assess coral bioerosion and bore holes (Hassan et al. 1994, Becker and Reaka-Kudla 1996), growth forms (Vago et al. 1994), growth bands (Logan and Anderson 1991), density, and calcification (Bosscher 1993, Heiss 1995).

Diploria strigosa (Dana 1848) is a common reef-building coral and a potentially important environmental record because it forms massive colonies, is abundant on western Atlantic and Caribbean reefs, and produces distinct annual density bands. Diploria strigosa has a meandroid (brain coral) growth form where linear series of polyps are separated by a skeletal wall called a theca (Fig. 1). Adjacent rows of polyps share a common theca; therefore, no exothecal structures are present. The thinner vertical inner walls are called septa. Opposing rows of septa Anastamose, or join, to form a spongy structure called the columella. As the colony grows, polyps lift their basal surface and secrete new floors, or dissepiments. Tabular dissepiments are relatively flat structures; whereas, vesicular dissepiments are typically shorter connective structures between the more continuous tabular dissepiments (for further discussion of terms and structures, see Wells 1956).

In this paper we report on the relationships between skeletal architecture and density banding in Diploria strigosa. This relationship was examined using high-resolution X-ray computed tomography and computer-image analysis. We focused on the skeletal mesoarchitecture and considered the size and shape of dissepiments, theca, septa, and columellae associated with high-density (HD) and low density (LD) bands.

Methods

Four specimens of the scleractinian coral, Diploria strigosa, were collected on December 12, 1985, at a 6 m depth off Hollywood Beach, Florida. X-radiographs of the specimens revealed distinct, regular density bands. Dodge et al. (1992) showed conspecific corals from different locations exhibited consistent skeletal variations relative to density banding; therefore, a single coral specimen was selected for skeletal analysis. The colony measured 35 cm in diameter and 15 cm in height. The coral was sectioned medially producing two parallel-sided slabs 6-7 mm thick. Slabs were X-radiographed with a setting of 50 kvP and 10 ma for 9 seconds and contained a growth record of 31 yrs (1955-1985). The uppermost sections of the slabs, representing the top of the colony, were sectioned into eight approximately equal sized pieces (50x70 mm). Seven pieces were ground on a geologist's thin-section maker at 0.25-mm intervals. Images were captured at each 0.25-mm interval with a flatbed scanner. The eighth piece was further sectioned parallel to and through the middle of ten high-density (HD) and ten low-density (LD) bands based on their location from the X-radiograph. The 20 plan-view skeletal surfaces from the HD and LD bands were imaged using a flatbed scanner.

For CT analysis, a coral cube measuring 25 mm on a side was sectioned so the top of the cube was a plan-view of the skeleton and the sides ran parallel to the growth axis. The cube was scanned at the High-Resolution X-ray CT Facility at the University of Texas at Austin, described by Ketcham and Carlson (2001). Settings for the scans were 100 kv and 0.325 mA, resulting in a focal spot of approximately 0.035 mm. Acquisition times of 90 seconds were used to construct 512x512 pixel images. The cube was positioned so that the plane of X-rays ran perpendicular to the growth axis producing plan-view images and 42 consecutive 0.1-mm-thick slices were scanned at 0.2-mm intervals, representing 8.4 mm of skeleton (Fig. 2a). The cube was then oriented so the plane of X-rays ran parallel to the growth axis producing longitudinal-view image and 30 consecutive 0.1-mm-thick slices were scanned at 0.1-mm intervals, representing 3.0 mm of skeleton (Fig. 2b). Fortner Slicer 3-D software (Fortner Res. LLC, Sterling VA 20164) was used to render these three-dimensional skeletal reconstructions from the CT images. With a reduced image opacity, the 3-D image illustrates the thinness of the tabular and vesicular dissepiments, the irregular columella, and the lack exothecal structures between adjacent corallites. Each bar of the scale represents 0.5 mm intervals.

This relationship was examined using high-resolution X-ray computed tomography and computer-image analysis. We focused on the skeletal mesoarchitecture and considered the size and shape of dissepiments, theca, septa, and columellae associated with high-density (HD) and low density (LD) bands.
skeletal reconstructions were rotated and tilted to assess the orientation of density bands to the slab. This was a useful technique for determining whether the bands were the product of variations in skeletal thickness or rather the byproduct of fortuitously aligned structures within the slab.

The 30 longitudinal-view images (e.g., Fig. 3a) were used to reconstruct the density-band pattern. The opacity of each image was reduced and the images were overlaid to form a single image or two-dimensional reconstruction (Fig. 3b). Consecutive CT images were also linked as AVI files to produce animations traveling through the coral skeleton. Longitudinal-view images were linked to create an animation passing through the skeleton parallel to the density bands. Plan-view images were linked to create an animation passing through the skeleton perpendicular to the density bands (Fig. 4). The plan-view animation included a picture in picture (PIP) window with a longitudinal-view slab that showed the density bands. The PIP window included a reference line that moved along the longitudinal-view slab indicating the location of the plan-view animation within HD and LD bands.

Measurements were made of dissepiment spacing and thecal wall thickness on computer images of the sectioned skeletal slabs. Measurements were made by computer image analysis (Mocha software, Jandell Scientific, San Rafael CA 94901).

Using images from thin-sectioned slabs, dissepiment spacing was measured along 13 transects taken mid-way between the theca and columella. Transects were 10-30 mm long, included 13-36 dissepiments, and spanned at least two HD and two LD bands. Density-band boundaries were determined from optic density measurements on the X-radiographs. A dissepiment spacing measurement was also taken at the maximum and minimum density value of each band in order to isolate possible spacing variations. Dissepiment thickness was consistently less than 0.01 mm.
Thecal wall thickness was measured on images from ten HD and ten LD plan-view slabs. Thicknesses, or widths, across the thecal wall were measured in the same position on HD and LD slabs. From 36-43 thickness measurements per density band were collected. A total of 20 slabs representing ten growth years were analyzed.

Average pixel intensity (API) was measured on plan-view CT images by calculating the mean pixel grayscale value within rectangular regions of interest (ROIs) encompassing the thecae, septa, and columellae (4.6 mm², 6.6 mm², and 4.6 mm², respectively). The ROIs were located over constant skeletal positions from image to image. Pixel grayscale values corresponded to the average X-ray attenuation within the volume of skeleton encompassed by the pixel boundaries and the scan thickness. Values ranged from 0 to 255, with low values signifying air, high values signifying skeletal material, and middling values representing a mixture of the two. There was some blurring across pixels caused by the finite resolution of CT data, which affected individual pixel values, but did not affect the overall amount of X-ray attenuation recorded in the image. By using averages within ROIs, the edge effects caused by blurring were eliminated, and changes in API could thus be directly interpreted as changes in skeletal element thickness. The principles of this technique were identical to those used for measuring porosity and fracture thickness in rocks using CT (see discussion and references in Ketcham and Carlson, 2001).

Data were analyzed with SAS/STAT software (SAS Institute Inc., Cary NC 27513). One-way ANOVA’s were used for comparison of HD and LD data sets within individual transects. A General Linear Model (GLM) was employed where

**Results**

The longitudinal-view images (Fig. 3a) represented X-rays of 0.1-mm-thick coral slabs with the thecae, columellae, septa, and dissepiments apparent. No clear banding pattern was present in the 0.1-mm individual images. The two-dimensional reconstruction of density bands (Fig. 3b) created from the 30 consecutive longitudinal-view images exhibited a clear banding pattern.

The longitudinal-view animation was created from 30 X-ray CT images (0.1 mm thick, 0.1 mm intervals). This animation traveled through the coral parallel to the density bands over a distance of 3.0 mm and revealed no obvious trends in skeletal structure. The plan-view animation (Fig. 4), created from 42 X-ray CT images (0.1 mm thick, 0.2 mm intervals), allowed the viewer to travel through 8.4 mm of coral skeleton deposited over approximately two years i.e., 2 HD and 2 LD bands. The picture in picture display located the plan-view animation as it passed through HD and LD bands. Thickening of both septa and columellae were observed in HD skeleton; whereas, no change in thickness of the thecae was apparent (animation available via internet at http://www.nova.edu/ocean/khelmle/ diploriamovie.html).

Mean dissepiment spacing did not differ significantly between HD and LD bands for any of the individual 13 transects (One-Way ANOVA, α=0.05, n=13-36). Nor did the overall mean dissepiment spacing, for all 13 transects combined, differ significantly between HD and LD bands (GLM Two-Way ANOVA, p=0.559, d.f. 1, 316). Dissepiment spacing measured at high- and low-density extremes (i.e., HD maxima and LD minima) was significantly smaller at maxima HD values (GLM Two-Way ANOVA, p=0.017, d.f. 1, 121).

Mean thecal wall thickness was not significantly different between HD and LD bands in eight of ten years (One-Way ANOVA, α=0.05, n=36-43). For the other two years, thickness was greater in the HD band of one (p=0.003, n=43) and greater in the LD band of the other (p<0.001, n=43). No significant difference existed in mean thecal wall thickness between HD and LD bands for the ten years combined (GLM Two-Way ANOVA, p=0.673, d.f. 1, 810), a significant level of interaction was present between HD/LD comparison and year by year comparison.

Thecal, septal, and columellar thickness was assessed as a function of average pixel intensity (API) on X-ray CT images. Consistent with annual thecal wall thickness measurements, the API of thecal regions did not differ significantly between HD and LD bands (Fig. 5)(Two-Way ANOVA, p=0.126, d.f. 1, 39). In contrast the API was significantly greater within HD bands for septal regions (Fig. 5)(Two-Way ANOVA, p=0.003, d.f. 1, 39) and columellar regions (p=0.001, d.f. 1, 39).

![Thecal, Septa, and Columellae Average Pixel Intensity](image)

**Fig. 5** Average Pixel Intensity (API) of thecae, septa, and columellae for high-density (HD) and low-density (LD) bands. An increase in API values indicates the presence of more skeleton. Error bars represent ± 1 standard error. Significance levels based on a two-way ANOVA for HD and LD bands and regions within bands.

**Discussion**

The individual 0.1-mm-thick longitudinal-view X-ray CT images had no apparent banding pattern (Fig. 3a). The lack of apparent banding does not indicate a lack of variability in skeletal element thickness; rather, it indicates that the amount of skeletal variation added up over a 0.1-mm-thick skeletal slice was insufficient to produce apparent density bands. The two-dimensional density-band reconstruction, created from 30 consecutive 0.1-mm-thick images, had distinct bands resulting from skeletal element thickness variations aligned over 3.0 mm of reconstructed skeleton (Fig. 3b). The reconstructed
banding pattern supports the finding of Barnes and Devereux (1988), Dodge et al. (1992), Le Tissier et al. (1994) and others, that X-ray revealed density banding is the product of skeletal element thickness variations.

The presence of banding at 3.0 mm and absence at 0.1 mm of skeleton indicates that apparent banding patterns are not consistently representative of variations in element thickness. Le Tissier et al. (1994) showed that structures as thin as 10 μm can cause fine banding depending on the orientation and path length of the structure. While unnoticeable in the 0.1-mm-thick slices, such fine bands may have been present; however, the reconstructed banding pattern appeared to result primarily from aligned variations of the septa, and columellae.

The plan-view animation (Fig. 4) passed through more than two years of skeleton and showed periodic trends in element thickness as the animation passed through consecutive HD and LD bands. The plan-view animation exhibited obvious thickening of septa and columellae associated with HD bands. No apparent changes in the thecae were evident. The plan-view animation clearly illustrated that skeletal variations in meso-architecture were associated with the location of HD and LD bands.

The longitudinal view animation passed through the skeleton normal to the growth axis. No apparent trends in element thickness were observed. This does not indicate a lack of skeletal variation, rather it suggests that the majority of thickening, responsible for banding, primarily occurs normal to the growth axis in Diploria strigosa.

Diploria strigosa deposits an average of six tabular dissepiments per year (n=50) that are on the order of 0.01 mm thick. Dissepiment spacing was not found to be significantly different between HD and LD bands, except at the HD maxima and LD minima. Le Tissier et al. (1994) calculated that dissepiments less than 0.02 mm thick will not be expressed on X-radiographs unless oriented at an angle to the X-ray beam. Considering the spacing measurements and the extreme thinness of dissepiments, it seems unlikely that dissepiments substantially contribute to bulk-density variations responsible for banding in D. strigosa.

The average thickness of the thecal wall was about 1.6 mm. Thecal wall thickness was measured on plan-view slabs from ten HD and ten LD bands. Mean HD thickness, for all ten years combined, was not significantly different from mean LD thickness. There was a significant level of interaction because changes in meandroid growth of the colony over the ten-year period were greater than thickness variations between HD and LD bands. To account for this, thickness was compared only between HD and LD bands of the same year. Eight of the ten years exhibited no significant difference in thickness between HD and LD bands. Thecal wall thickness measured by API did not differ significantly between HD and LD bands. The thecal API results are less robust than septal and columellar results at indicating skeletal thickening due to the large skeleton-to-air-space ratio. Considering that the thecal API results supported the actual skeletal thickness measurements, no consistent thickening of the thecae was associated with density-band formation.

In Diploria strigosa, septa possess platiform lobes (vertical pillar-like structures at inner edges of septa), synapticulae (small horizontal rods connecting adjacent septa), and septal teeth (tiny spikes and protrusions on the septa). Because API measurements represented the amount of skeleton present in a given area on the image, they encompassed possible variations in these secondary structures. Septal thickness was significantly greater in HD bands. The significant increase in API reflected thickening of the septa because the location, the number of septa, and the CT settings were all held constant. API measurements were useful because thickness was not consistent along the length of a septum; they were thinnest near the middle and thickened approaching the theca and at their inner margins.

The columella of Diploria strigosa is formed by anastamosing along the inner margins of the septa forming a loosely organized structure. Columellar API was significantly greater in HD bands. Diploria strigosa possesses a highly irregular trabecular columella; therefore, the significantly greater API signified thickened and/or increased columellar structure. API measurements were ideal for measuring the complex septal and columellar structure, which were not conducive to simple point-to-point thickness measurements. The results confirmed the apparent variations in septal thickness and columellar structure visible in the plan-view animation.

It is evident in the literature that the specific skeletal elements causing density banding differ between species (Macintyre and Smith 1974, Barnes and Devereux 1988, Dodge et al. 1992, Le Tissier et al. 1994, and others). This study of Diploria strigosa is the first analysis of density banding for a meandroid coral. Our general results indicated that apparent density bands in D. strigosa resulted from thickness variations in the septa and columellae. The location of density bands within skeletal slabs supported these findings as banding was typically limited to sections of septa and columellae.

A distinction exists between skeletal element thickness variations and the resultant banding pattern produced on X-radiographs. Thickness or spacing variations in skeletal elements generally result from changes in the extension rate and/or calcification rate of the coral in response to varying environmental conditions or endogenous processes. Density bands on X-radiographs typically provide little information about the actual skeletal variations that cause them. Barnes and Lough (1990), Barnes and Taylor (1993), and Le Tissier et al. (1994) extensively illustrated the effects of skeletal architecture on X-ray apparent density bands and the possible misinterpretations. This paper identifies the variations in specific skeletal elements causing banding in Diploria strigosa. Further, the research illustrates techniques for linking the assessment of skeletal element variations with the resultant density-band pattern by X-ray computed tomography.

Acknowledgements We thank Dr. Dave Barnes and an anonymous reviewer for their comments and suggestions. We thank Kevin Kohler for computer support on this project.
References


Dana JD (1848) Zoophytes. United States Exploring Expedition to the Pacific and its Islands in the years 1838-1842, under the Command of Charles Wilkes. vol 7, pp 121-708


