Learning from Lionfish: Modeling Marine Invaded Systems

Matthew Johnston, PhD
Halmos College
of Natural Sciences and Oceanography
http://www.mattspace.com
Introduction to Invasives

Model Background/Mechanics

Hurricanes and Lionfish

Lionfish Control

Southern GOM damsels
What is an invasive species?

“Animals, plants or other organisms introduced by man into places out of their natural range of distribution, where they become established and disperse, generating a negative impact on the local ecosystem and species.” - International Union for the Conservation of Nature
Invasive Species

- 30,000 eggs/four days, buoyant ~30 days
- 10-12 month maturity
- Depth to 300 m
- 10° C
Motivation and Aim of Research

Motivation and Aim of research:

- *Understand* the invasion process
- Use mathematical computer simulation to help *understand and solve* complex questions in invasion ecology
The Models

- **Cellular automaton** biophysical model
 - Simple rules = complex behavior
- **Lagrangian model**
 - Particle movement in water
- **Physical oceanographic conditions**
 - Ocean current, SST, depth
- **Life history traits**
 - *Temporal*: breeding age, life stage mortality, larval duration, egg quantity, breeding frequency

Validated against USGS-NAS
Model Source Data

Ocean Currents (hybrid): HYCOM – monthly and daily averages 1/12° (10km) and 1/25 ° (4km), monthly 1/3° OSCAR (40 km), daily 1/25 ° ROM (4 km)

Depth (satellite): ETOPO 1 Global Relief Model (2 km)

SST (satellite): MODIS - monthly (4 km)

Chlorophyll (satellite): MODIS - monthly (4 km)

Life History Characteristics: Literature

All datasets in public domain
Cellular Automaton Agent-Based Model

- Study area grid
- 4 main logic components:
 - conceptual cells
 - unique parameters
 - neighborhood cells
 - cell state
 - rules
 - downstream
 - Settling dictated by temp/depth

Rules are tested for each step per cycle (30 days) for each larva.
Algorithmic Flow of the Model

Process Steps:

Step 1: Select founder population (females)

Step 2: Apply mortality
- Adult
- Egg/larval/juvenile mortality applied to qty larvae produced/female
- If alive moves to step 3

Step 3: Movement of larvae governed by the rules
- Process repeats for larval duration period
- Last cell potential settling location

Step 4: Settlement
- Parameters tested for settlement

Step 5: Repeat for duration
Lagrangian Agent-Based Model

- Grid containing flow vectors derived from u (east-west) and v (north-south) components

- **conceptual cells**
 - Unique parameters

- **rules**
 - Settling dictated by ocean conditions

- **movement**
 - Euler method
 - Hourly time-steps

$\begin{align*}
 i_v & = v_1 - v_0 + v_{11} - v_{00} \\
 i_u & = u_1 - u_0 + u_{11} - u_{00}
\end{align*}$

Water Temp.
Current direction
Water Depth
Water Velocity
Lagrangian Agent-Based Model – 2D

Vector Interpolation

- Position of larva (P) – u and v (or x/y)
- Nearest 4 vectors
- Weighted vector averaging to predict trajectory of particle, i.e. \(\vec{v} \)
- Bilinear interpolation using the Euler method

\[
\vec{v}_i = (1-v)(1-u)\vec{v}_{0,0} + (1-v)uv\vec{v}_{1,0} + v(1-u)\vec{v}_{0,1} + uv\vec{v}_{1,1}
\]
Calculating Trajectory

- From starting position \((P) \ u/v: \n - 4 nearest vectors
 - Vector path interpolated
 - Particle moved along vector at calculated velocity for one hour i.e., one timestep \(\Delta t \)
- Process repeats over PLD

\[
\vec{v}_i = (1-v)(1-u)\vec{v}_{0,0} + (1-v)uv\vec{v}_{1,0} + v(1-u)\vec{v}_{0,1} + uv\vec{v}_{1,1}
\]

\[
P_{i+1} = P_i + \Delta t\vec{v}_i
\]

\[
P_1 = P_0 + \Delta t\vec{v}
\]
Lagrangian Agent-Based Model – 3D

- Position of larva (P) u/v/z
- Nearest 8 vectors - i.e., trilinear interpolation
- Particle moved along vector at calculated velocity for one hour i.e., one timestep Δt

$$\mathbf{V}_{uvz} = V_{000} (1 - u) (1 - v) (1 - z) + V_{100} u (1 - v) (1 - z) + V_{010} (1 - u) v (1 - z) + V_{001} (1 - u) (1 - v) z + V_{101} u (1 - v) z + V_{011} (1 - u) v z + V_{110} u v (1 - z) + V_{111} u v z$$

$$P_{i+1} = P_i + \Delta t \mathbf{v}_i$$
14.5 million larval movements spanning 5 years
Hurricanes accelerated the Florida-Bahamas Lionfish invasion

- Curious: Bahamas mean currents run north and west – lionfish moved south east
- Current anomalies?
- Role of hurricanes?

~20 years – a long time?
Hurricanes accelerated the Florida-Bahamas Lionfish invasion

1992 – 2003 (13 storms)

Sandy 2012
Hurricanes accelerated the Florida-Bahamas Lionfish invasion

Hurricane Sandy - 2012

24 hour frames
Hurricanes accelerated the Florida-Bahamas Lionfish invasion

- **Step 1 - Identify crossover events due to hurricanes**
 - Analyze direction/velocity of daily HYCOM data in Florida Straits

- **Step 2 – Analyze effect of hurricanes on population size**
 - Small founder pop. In NW Bahamas
 - 2000 – 2007
 - Simulations using: monthly mean currents (average year)
 - Simulations using: daily currents for 2004-2005 hurricane seasons
 - Contrasted hurricane vs. non-hurricane
Step 1 - Identify crossover events due to hurricanes

South Florida/Bahamas Hurricanes 1992-2003

23 opportunities between 1992 - 2005
Step 2 – Analyze effect of hurricanes on population size
Step 2 – Analyze effect of hurricanes on population size
Step 2 – Analyze effect of hurricanes on population size

- Difference in pop. from an average year
- 5-6% population increase/storm year
- 15% increase in consecutive years
- First to link hurricanes with marine invasives
- Implications for all species
Lionfish Removals Require a Coordinated International Effort

- Lionfish removals – do they work?
 - Sporadic and incomplete
 - Contemporary controls leave remnant populations
 - What rate, where, how often?
- Previous modelling efforts (Arias-González et al. [2011], Barbour et al. [2011], Morris et al. [2011])
 - Local control only - how does connectivity factor?
Two goals - quantify:

- Connectivity between regions
 - Identify importer/exporter relationships
- Removal rates required to contain invasion
 - Target 100% of population or just the majority (95%)

Focus: impact of removals on Carolinas lionfish populations
Identify all 10 precincts linked to CAR (i.e. Johnston and Purkis 2014b)

5 years

10 random locations, 100 lionfish each

Track exporter vs. importer location

Identify exporter/importer links – major exporters supply 95% to an importer precinct

Lionfish Removals Require a Coordinated International Effort

Goal 1 - Quantify connectivity between regions
Lionfish Removals Require a Coordinated International Effort

Goal 2 - Quantify Removal Rates Required to contain invasion

- Step 1
 - Model virtual culls performed in the major exporter precincts - i.e., those that supply 95% of lions to the Carolinas
 - 5 years, 10 random locations, 100 lionfish each
 - Perform culls at varied rates
 - Annual (i.e. derbies) 50% - 90%
 - Monthly – 10% - 60%

- Step 2
 - Repeat basin-wide for all 10 precincts that provide 100% of lionfish to the Carolinas

Tests sporadic vs. continuous culls targeting 95% or 100%
Lionfish Removals Require a Coordinated International Effort

Results (step 1)
Lionfish Removals Require a Coordinated International Effort

Results (step 1)

- Linkages between regions
- Cuba - major exporter
- Carolinas imports almost all

Diagram:
- Primary Link
- Secondary Link
- Tertiary Link
- Larval Flow
- High Linkage
- Low Linkage
Lionfish Removals Require a Coordinated International Effort: Results (Step 2)

Effects of culls on CAR pop., targeting those that supply 95% of lions to the Carolinas
Lionfish Removals Require a Coordinated International Effort: Results (Step 2)

Not doing enough!

Are we causing more damage (i.e. recruitment compensation) – just “pruning the trees”??

Needed:
1. Monthly culls
2. Basin wide
3. Target 20% of the entire population
 - 25% remnant populations
 - 20% basin-wide/monthly
Royal Damsel (*Neopomacentrus cyanomos*) in the Southern Gulf of Mexico

- First sighted in 2012 near Veracruz
- Common to aquaria, widespread
- Found in large numbers
- Non-predatory
 - Competition with native damsels
- Shallow \(\leq 21 \) m
- Pelagic larvae
Royal Damsel (*Neopomacentrus cyanomos*) in the Southern Gulf of Mexico

- Rapid risk assessment
- Create simulations for 5 years
- 8 Random founder populations
- Literature values for fecundity/habitat preferences
- Daily 1/25° HYCOM, 2010 - 2014
- Analyze ocean current trends
Royal Damsel (*Neopomacentrus cyanomos*) in the Southern Gulf of Mexico
Royal Damsel (*Neopomacentrus cyanomos*) in the Southern Gulf of Mexico

- Limited spread over 5 years
- Connectivity break from greater GOM
- Low invasion risk over 5 – 15 years
- Control efforts should be focused near Veracruz extending to the western Campeche Bank and Mexican Shoreline
Thank you!

More information: http://www.mattspace.com