Maximizing NVivo Utilities to Analyze Open-Ended Responses

Xiaoying Feng
University of Florida, fengxy@ufl.edu

Linda Behar-Horenstein
University of Florida, lsbhoren@ufl.edu

Follow this and additional works at: https://nsuworks.nova.edu/tqr

Part of the Educational Assessment, Evaluation, and Research Commons, Educational Methods Commons, Health and Physical Education Commons, Organization Development Commons, Other Teacher Education and Professional Development Commons, and the Quantitative, Qualitative, Comparative, and Historical Methodologies Commons

Recommended APA Citation

This How To Article is brought to you for free and open access by the The Qualitative Report at NSUWorks. It has been accepted for inclusion in The Qualitative Report by an authorized administrator of NSUWorks. For more information, please contact nsuworks@nova.edu.
Maximizing NVivo Utilities to Analyze Open-Ended Responses

Abstract
Open-ended responses are widely used to explore and understand participants’ experiences and perspectives in a variety of fields. As one of the most powerful computer-assisted qualitative data analysis software, NVivo allows researchers to analyze open-ended responses to survey and/or interview questions, as well as other text data like reflective writing, image, and videos. The purpose of this paper is to describe and demonstrate how the NVivo word frequency, text search, and matrix coding features can be used to analyze qualitative data from a longitudinal evaluation project. The authors show how the matrix coding feature maximizes NVivo utilities in an analysis of open-ended responses and highlights differences across and within participants’ groups. The authors explain this approach by presenting a step by step overview: data cleaning and case coding; data import; word frequency analysis; text coding and reference extracting; and matrix coding and inductive analysis. Using this approach, the Clinical Translational Science Institute (CTSI) evaluation team acquired deeper insight into the participants’ experiences and perspectives about CTSI programs and received insights that may lead to improvement. From a methodological perspective, this approach capitalizes on NVivo's features to mine qualitative data. The methodology described in this paper is applicable to other educational or program evaluations. Also, it is appropriate for analyzing large samples or longitudinal qualitative data in marketing and management.

Keywords
NVivo, Matrix Coding, Qualitative Method, Open-Ended Responses, Large Sample Size Data

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 International License.

Acknowledgements
Research reported in this publication was supported by the University of Florida Clinical and Translational Science Institute, which is supported in part by the NIH National Center for Advancing Translational Sciences under award number UL1TR001427. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

This how to article is available in The Qualitative Report: https://nsuworks.nova.edu/tqr/vol24/iss3/11
Maximizing NVivo Utilities to Analyze Open-Ended Responses

Xiaoying Feng and Linda Behar-Horenstein
University of Florida, Gainesville, Florida, USA

Open-ended responses are widely used to explore and understand participants’ experiences and perspectives in a variety of fields. As one of the most powerful computer-assisted qualitative data analysis software, NVivo allows researchers to analyze open-ended responses to survey and/or interview questions, as well as other text data like reflective writing, image, and videos. The purpose of this paper is to describe and demonstrate how the NVivo word frequency, text search, and matrix coding features can be used to analyze qualitative data from a longitudinal evaluation project. The authors show how the matrix coding feature maximizes NVivo utilities in an analysis of open-ended responses and highlights differences across and within participants’ groups. The authors explain this approach by presenting a step by step overview: data cleaning and case coding; data import; word frequency analysis; text coding and reference extracting; and matrix coding and inductive analysis. Using this approach, the Clinical Translational Science Institute (CTSI) evaluation team acquired deeper insight into the participants’ experiences and perspectives about CTSI programs and received insights that may lead to improvement. From a methodological perspective, this approach capitalizes on NVivo’s features to mine qualitative data. The methodology described in this paper is applicable to other educational or program evaluations. Also, it is appropriate for analyzing large samples or longitudinal qualitative data in marketing and management.

Keywords: NVivo, Matrix Coding, Qualitative Method, Open-Ended Responses, Large Sample Size Data

Introduction

Open-ended survey responses and/or interview questions are widely used to explore and understand participants’ experiences and perspectives in a variety of fields, such as program evaluation, marketing, and management (Creswell, 2012; Vitouladiti, 2014). By analyzing the text embedded in open-ended question responses, researchers can acquire further information and obtain deeper insight into participant beliefs and experiences (Creswell, 2012). In education, collecting open-ended responses is helpful in the assessment of program effectiveness, educational product (e.g., textbooks, assessments) development, and measurement (Fitzpatrick, Sanders, & Worthen, 2011).

To analyze open-ended responses, researchers use qualitative methods to code, organize information and logically group the data into categories or themes, and to gain an innate understanding. Prior to the introduction of computer assisted qualitative data analysis software (CAQDAS), coding was completed manually, often by using two or more research analysts. An often-cited criticism of qualitative research is that researchers’ personal viewpoints may unduly impact the ways in which they analyze data (Castellan, 2010; Creswell, 2012). However, CAQDAS reduces the potential for bias when only human coders are used. According to Woods, Macklin, and Lewis (2016), using CAQDAS may diminish this type of bias. The use of CAQDAS enhances confidence in the conclusions drawn because access and retrieval of data, which allows for visualization of the data, is more easily accomplished than with manual methods (Woods, Macklin, & Lewis, 2016). For example, researchers recently
described how reading, sifting and sorting, grouping similar responses together, and developing
categories, could be used to calculate the frequency of occurrences across assigned categories
(i.e., using a A QUAN→qual sequential method; Behar-Horenstein & Feng, 2017). Use of the
CAQDAS increased our confidence in the rigor of the analysis (Davidson & Skinner, 2010;
Welsh, 2002).

As one of the most used CAQDAS, NVivo allows researchers to analyze text, image, and
videos within the same research project (QSR International Pty Ltd, n.d.). The intrinsic
value of NVivo lies in its capacity to code and categorize various data formats. Similar to other
CAQDAS, using NVivo can minimize researcher bias. However, the disadvantages ascribed
to qualitative data analysis is that it does not always include evidence needed to support
observability and measurability. Using particular programmatic functions overcomes these
limitations. For example, the word count function permits the measurement and logical
arrangement of qualitative data. Such an approach can be useful in analyzing qualitative data
from reflective writing, interview, and open-ended responses of survey, etc. NVivo also
provides a matrix coding feature that allows researchers to compare qualitative data across and
within categories. Within educational program evaluation, NVivo’s word count and taxonomic
coding for text data has been reported (Behar-Horenstein & Feng, 2017; Behar-Horenstein,
Feng, Isaac, & Lee, 2017; Wagland et al., 2017). However, studies utilizing matrix coding have
not been reported. Considering that NVivo is one of the most used CAQDAS, the purpose of
this paper was to describe and demonstrate the application of its word frequency, text search,
and matrix coding utilities in an analysis of qualitative data from a longitudinal evaluation
project. The researchers demonstrate how matrix coding assists in the exploration of potential
differences across and within different participants’ groups.

The original survey from which data for this study was taken was conducted at a
research-intensive university to evaluate the effectiveness of its Clinical Translational Science
Institute (CTSI) programs. The purposes of this survey were to assess the use of and impact of
the university’s CTSI programs on the research environment.

To assess the success and impact of the CTSI programs the CTSI Evaluation and
Tracking Committee has annually surveyed academic health science center and other college
faculty at the main and satellite campuses since 2011. A longitudinal dataset was created based
on the survey data. Although the CTSI Evaluation and Tracking Committee analyzed
quantitative data and reported related findings annually, to date, the open-ended responses have
been not systematically analyzed. Beginning in 2017, researchers from the CTSI Educational
Development and Evaluation team analyzed the open-ended responses from 2011-2016 annual
surveys (Behar-Horenstein & Feng, 2018).

Overall, 1,845 faculty participated in the annual CTSI survey while 1,096 answered at
least one of the eight open-ended questions. Participants’ demographic information included:
CTSI-ID (a unique number used to track their use of CTSI resources and services), CTSI user
status (yes/no), laboratory status, clinical status (clinical and non-clinical faculty), campus
location, and college group. In this study, we explain the methods that were used to thematically
analyze participant responses to three survey questions: 1. What changes can you suggest (if
any) that would encourage collaboration? 2. Please share any additional suggestions or
comments that can help the CTSI better meet your needs, and 3. Other comments and their
comparisons across the main campus health, main campus others and satellite campus.

Research Approach

NVivo Pro 11.4 served as the data analysis tool. As a well-developed software utilized
in managing text, video, and observational data, NVivo, is especially helpful for logically
organizing the longitudinal data and exploring the insights of a data sample (QSR International Pty Ltd, n.d.).

The major focus of this approach was to use NVivo’s matrix coding feature to search for patterns and insights in the responses among different demographic groups. The approach to matrix coding includes five steps: data cleaning and case coding; data import; word frequency analysis; text coding and reference extracting; matrix coding and follow-up inductive analysis.

Step One: Data Cleaning and Case Coding

Before analyzing the data, the first step was to clean the data and code the cases. Each case was coded by CTSI-ID as case identification. Case classification was coded based on participants’ demographical attributes: (a) CTSI user status (1=CTSI users; 0=non-users), (b) laboratory status (1=laboratory faculty; 0=non-laboratory faculty), (c) clinical status (1=clinical faculty; 0=non-clinical faculty), (d) campus location (1=main campus; 0=satellite campus), and attributes of campus location and college group (1=Main Campus Health Science; 2=Main Campus Others; 0=Satellite Campus-Medicine).

The original data was separated into unique Excel spreadsheets; each one was matched to an open-ended question. Within each Excel spreadsheet, each row contained the participant’s open-ended text response and demographic information for each case (See Panel 1).

Panel 1. Original Data in Excel

Step Two: Data Import

The next step was to import the open-ended responses and participant demographic data into NVivo. Using the data import feature of NVivo, the cases in Excel spreadsheet were easily read and imported into NVivo (See Panel 2).
Panel 2. Import Data into NVivo

Step Three: Word Frequency Analysis

The third step was to use NVivo’s word count feature to calculate the most frequently occurring words of five or more letters. The most frequently used words were viewed as a proxy that represented participants’ perspectives. Supporting this approach was the assumption that important and significant words would be used more frequently (Carley, 1993). Word count has also been cited for its advantages in (a) identifying patterns more easily, (b) verifying a hypothesis and (c) maintaining analytic integrity (Jackson & Trochim, 2002). Researchers assert that analyzing word frequency improves analytic rigor, and decreases their bias regarding overweighting (Halpern, 1984; Lincoln, & Guba, 1985; Onwuegbuzie, & Leech, 2007; Sandelowski, 2001). However, the use of the word count function is not without its critics. Word count can result in decontextualization to the point where particular words lack meaning. For example, words such as “him,” “was”, “I” do not increase the researcher’s understanding of a phenomenon. Thus, we only used words of five or more letters (for example, we excluded words like “we”, “the”, “is”, etc.; these words were frequently used but could not contribute to the analysis) in the word frequency analysis to avoid involving meaningless articles, pronouns, and prepositions.

To analyze the word frequency, researchers used one of NVivo’s features, the “word frequency query”. First, the open-ended responses of each question were run through the word frequency query using words with stemmed variants (e.g., “research, researches, researcher, researchers” were counted as “research”) their weighted percentages were calculated (see Panel 3).

The most frequently occurring words, with a weighted percentage of more than .5%, served as nodes or coded words in NVivo. A weighted total percent of the contents was provided for each question, which reflects the words that were highly representative words of participants’ responses. For question 1, 15 coded words (e.g. researches, collaborators, faculty) emerged from 349 participant responses, which represented 18.2% of the data. For question 2, 14 coded words emerged from 184 responses, which represented 12.3% of the data. For question 3, 13 coded words emerged from 425 responses, which represented 12.3% of the data.
Panel 3. Using NVivo Query to Identify the Most Frequently Used Words in Data

Step Four: Text Coding and Reference Extracting

Next, while employing the text search query feature, we used the most frequently occurring words (with the stemmed variants) to code the responses content (all sentences or paragraphs for each case within each question). In NVivo, those words are referred to as “nodes” (QSR International Pty Ltd, n.d.). Content that included the most frequently occurring words were identified as references of the nodes. The text coding summary, provided by NVivo, shows the number of references for each node (see Panel 4).

Panel 4. Most Frequently Used Words as Nodes to Code the Data
Next, we used NVivo’s reference extract feature to tag and extract the response content (the “reference”) within highlighted nodes (see Panel 5).

Panel 5. Coded References

Step Five: Matrix Coding and Inductive Analysis

The fifth step is matrix coding. The use of this feature allowed comparisons across and between different demographic categories (case classification attributions) with the participant responses.

Four matrices were produced for each open-ended question: 1. nodes (the most frequently occurring words) by CTSI user status; 2. nodes by laboratory status; 3. nodes by clinical status (clinical/ non-clinical faculty); 4. nodes by the combined data of campus location and college group (Main Campus Health Science; Main Campus Others; Satellite Campus-Medicine). Within each matrix, the first column shows the nodes. The first row shows the case classification attribution and each cell of the matrix represents the number of responses (also the number of cases) which mentioned the nodes (the most frequently occurring words) (see Panel 6).
To view the results, researchers double clicked the number in each matrix. Clicking on the number resulted in a display of the coded references, which were then used for further analyses and reporting purposes (see Panel 7). While reviewing the results of matrix coding, we used inductive analysis to explore participants’ subjective perspectives (Saldaña, 2015). Based on the coding results, researchers identified themes and provided conceptual definitions of the themes. Using participant responses to three questions [What changes can you suggest (if any) that would encourage collaboration? Please share any additional suggestions or comments that can help the CTSI better meet your needs, and Other comments] this process resulted in the identification of themes across the main campus health, main campus others and satellite campus.

Panel 7. Matrix Content

Researcher’s Perspectives

The research team included one faculty member and a Ph.D. graduate in educational leadership. The first author is an experienced qualitative and educational researcher from the College of Education who studies outcomes that accrue from pedagogical interventions, and explores changes in faculty beliefs related to teaching, educational research, and assessment practices. Her research initiatives encompass faculty development, cultural competency, and the assessment of behavioral, cognitive, and attitudinal change. The second author has expertise in qualitative and quantitative analyses as well as in NVivo. The researchers’ interest in this study emanated from their observation that open-ended surveys comments had not been previously analyzed and their belief that this dataset potentially contained rich information.

Implications

Using this approach, the CTSI evaluation team acquired otherwise inscrutable insight into the participants’ experiences and perspectives about CTSI programs. Based on the findings, the CTSI evaluation team utilized different demographic group viewpoints and strategically enhanced program delivery. Identifying commonly shared viewpoints provided guidance towards improving specific CTSI programs (Behar-Horenstein & Feng, 2018; Behar-Horenstein & Zhang, 2019).
This approach to data analysis produced contextually rich understandings that exceed the type of information which may be acquired from a sole reliance on the close-ended survey data. From a methodological perspective, this approach amplifies NVivo’s features to mine qualitative data and to produce novel findings. Indeed, it highlights the value of NVivo features and qualitative research methods to provide findings that had not been previously explored and remained unknown.

The methodological approach described in this paper is applicable to other educational or program evaluation studies, in which open-ended text responses are collected among demographic groups. For the evaluator who wants to explore specific perspectives and provide targeted improvement strategies, this approach may be appropriate. Besides comparing demographic groups, this approach can also be used to analyze categorical data and identify similarities and differences among, for example experimental vs. control group participants. We encourage researchers to use this approach in future studies.

This approach is also appropriate for analyzing large sample or longitudinal qualitative data in marketing and management fields. In marketing, this approach can assist in people product analysis. An analysis of comments from participant survey can provide precise product improvement strategies to different customer groups.

Overall, large sample size or longitudinal qualitative data can be difficult to analyze. With the help of NVivo features, qualitative data can be logically and measurably managed. Specifically, using NVivo’s matrix coding feature, open-ended responses could be analyzed among different group, help researchers better understand the participants’ viewpoints, discover the specific perspectives for different groups, and offer targeted suggestions and strategies that maximize the effectiveness of program evaluation.

References

Education.

Author Note

Xiaoying Feng, Ph.D. is a graduate of University of Florida; Senior Analyst, Avar Consulting, Inc.; Contract Researcher, American Institutes for Research. Correspondence regarding this article can be addressed directly to: fengxy@ufl.edu.
Linda S. Behar-Horenstein, Ph.D. is Professor Emeritus, University of Florida. Correspondence regarding this article can also be addressed directly to: lsbhoren@ufl.edu.
Research reported in this publication was supported by the University of Florida Clinical and Translational Science Institute, which is supported in part by the NIH National Center for Advancing Translational Sciences under award number UL1TR001427. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Copyright 2019: Xiaoying Feng, Linda Behar-Horenstein, and Nova Southeastern University.

Article Citation